Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S=3+3^3+3^5+...+3^31
Số số hạng trong S là : (31-1):2+1=16 (số hạng)
Có 16 chia hết cho 2 ta chia thành các tổng 2 số hạng:
S=(3+3^3)+3^4.(3+3^3)+3^8.(3+3^3)+...+3^28.(3+3^3)
S=30+3^4.30+3^8.30+...+3^28.30
S=(1+3^4+3^8+...+3^28).30 chia hết cho 30.
Đặt S=3+3^3+3^5+...+3^31
Số số hạng trong S là : (31-1):2+1=16 (số hạng)
Có 16 chia hết cho 2 ta chia thành các tổng 2 số hạng:
S=(3+3^3)+3^4.(3+3^3)+3^8.(3+3^3)+...+3^28.(3+3^3)
S=30+3^4.30+3^8.30+...+3^28.30
S=(1+3^4+3^8+...+3^28).30 chia hết cho 30.
k cho mk nha Vũ Thảo Dương hot boy !!!!!
Đặt S=3+3^3+3^5+...+3^31
Số số hạng trong S là : (31-1):2+1=16 (số hạng)
Có 16 chia hết cho 2 ta chia thành các tổng 2 số hạng:
S=(3+3^3)+3^4.(3+3^3)+3^8.(3+3^3)+...+3^28.(3+3^3)
S=30+3^4.30+3^8.30+...+3^28.30
S=(1+3^4+3^8+...+3^28).30 chia hết cho 30.
A=3+3^3+3^5+3^7+...3^31
=(3+3^3)+(3^5+3^7)+....+(3^29+3^31)
=(3+3^3)+3^4.(3+3^3)+...+3^28.(3+3^3)
=30.(1+3^4+...+3^28).
=> A chia hết cho 30 (đpcm)
B3
3^x+2 +3^x=10
=> 3^x.3^2+3^x=10
=> 3^x .(9+1)=10
=>3^x.10=10
=>3^x=1
Vì chỉ có lũy thừa có số mũ bằng 0 thì lũy thừa đó bằng 1
=>x=0
Mk chỉ làm B3 thui mấy bài kia dài lắm k cho mk nha
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)
A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)
A=2.63+......................+2^2005.63
A=63.(2+..............................+2^2005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
TICK CHO MÌNH NHA