Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Gọi (2n+1, n+1) = d (d thuộc N*)
⇒⎧⎨⎩2n+1⋮dn+1⋮d⇒⎧⎨⎩2n+1⋮d2n+2⋮d⇒{2n+1⋮dn+1⋮d⇒{2n+1⋮d2n+2⋮d
⇒(2n+2)−(2n+1)⋮d⇒(2n+2)−(2n+1)⋮d
⇒2n+2−2n−1⋮d⇒2n+2−2n−1⋮d
⇒1⋮d⇒1⋮d
Mà d thuộc N*
nên d = 1
=> (2n+1, n+1) = 1
=> 2n + 1 và n + 1 là 2 số nguyên tố cùng nhau (đpcm)
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Vì \(n^2+n\) là số chẵn
và 2n+1 là số lẻ
nên \(n^2+n\) và 2n+1 là hai số nguyên tố cùng nhau
Gọi ƯCLN(2n + 1 ; 5n + 2 ) = d
2n + 1 \(\Rightarrow\)(2n + 1) = 10n + 4
5n + 2\(\Rightarrow\) 2 (5n + 2) = 10n + 5
Xét hiệu ( 10n +5 ) - ( 10n + 4 ) = 10n - 10n +5 - 4 = 1
\(\Rightarrow\)1 \(⋮\)d \(\Rightarrow\)d = 1
Vậy 2n + 1 và 5n + 2 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(2n + 1 ; 5n + 2 ) = d
2n + 1 \(⋮\)d \(\Rightarrow\)10n + 4\(⋮\)d ( 1 )
5n + 2 \(⋮\)d \(\Rightarrow\)10n + 5 \(⋮\)d ( 2 )
Từ (1) và (2) \(\Rightarrow\)(10n + 5) - ( 10n +4 ) = 10n - 10n + 5 - 4 = 1 \(⋮\)d \(\Rightarrow\)d = 1
\(\Rightarrow\)2n + 1 và 5n + 2 là hai số nguyên tố cùng nhau.
a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)
\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)
Xét 2 biểu thức :
\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)
\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)
\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.
Gọi d là ước chung lớn nhất của 2n+1 và 3n+1 ta được:
\(\left\{{}\begin{matrix}\left(2n+1\right)⋮d\\\left(3n+1\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+3\right)⋮d\\\left(6n+2\right)⋮d\end{matrix}\right.\Rightarrow\left[\left(6n+3\right)-\left(6n+2\right)\right]⋮d\)
\(\Rightarrow\left(6n+3-6n-2\right)⋮d\Rightarrow1⋮d\)
Do đó: \(d=\pm1\)
\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)
Vậy \(2n+1\) và \(3n+1\) là nguyên tố cùng nhau.
Gọi d là ƯCLN(2n+1,3n+1)
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=\pm1\)
=> ƯCLN(2n+1,3n+1)=1
=> đpcm