\(2^{28}-1⋮29\)

2.Trong các số có dạng

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

gọi số dạng 15x11y2013z4 là A

để số này lớn nhất có thể thì x,y phải lớn nhất có thể

=> x=y=9

ta có:

1+5+9+1+1+9+2+0+1+3+z+4=36+z

để số này lớn nhất thì z cũng phải là số có 1 chữ số lớn nhất có thể và z chia hết cho 3

=> z=9

vậy 159119201394 lớn nhất có dạng A chia hết cho 3

để số có dạng A nhỏ nhất thì x,y phải nhỏ nhất có thể

=> x=y=0

ta có:

1+5+0+1+1+0+2+0+1+3+z+4=27+z

số nhỏ nhất 27+z chia hết cho 3 là 0=> z=0

vậy số 150110201304 là số nhỏ nhất có dạng A chia hết cho 3

a: Để A là số nguyên thì \(x^3-3x^2-x^2+3x+x-3-7⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{4;2;10;-4\right\}\)

b: Đề sai rồi bạn

 

14 tháng 1 2017

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{\left(a+b+c\right)c}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)=0\)

\(\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)\ne0\)với mọi a,b,c

\(\Rightarrow\)a+b=0\(\Leftrightarrow\)a=-b là hai số đối nhau (1)

từ đó được \(a^n=-b^n\)với mọi n lẻ.

Khi đó \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\Leftrightarrow\frac{1}{c^n}=\frac{1}{c^n}\)luôn đúng (2)

Từ (1)và(2) ta được đpcm

14 tháng 11 2016

sao bn toàn cây khó thế?

 

15 tháng 11 2016

làm đề tỉnh mà .Sắp thi rồi nên

21 tháng 11 2016

Chỗ kí hiệu : sai r`, sao lại vt là chia hết cho 7, trong khi đg cần tìm số dư

Có: \(20\equiv-1\left(mod7\right)\Rightarrow20^{11}\equiv\left(-1\right)^{11}=-1\left(mod7\right)\left(1\right)\)

\(22\equiv1\left(mod7\right)\Rightarrow22^{12}\equiv1\left(mod7\right)\left(2\right)\)

\(1996\equiv1\left(mod7\right)\Rightarrow1996^{1997}\equiv1\left(mod7\right)\left(3\right)\)

Từ (1); (2) và (3) \(\Rightarrow A=20^{11}+22^{12}+1996^{1997}\equiv-1+1+1=1\left(mod7\right)\)

Vậy số dư khi chia A cho 7 là 1

30 tháng 11 2016

BÀi này dễ tí mik giải cho