Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
555222 + 222555 =222555 + 555555 - (555555 - 555222)
= 222555 + 555555 - 555222(555333 - 1)
Ta có :
222555 + 555555 chia hết cho 222 + 555 = 777 chia hết cho 7 (1)
555333 - 1 = (5553)111 - 1 \(⋮\) 5553 - 1
Ta có 555 = 7 . 79 + 2 = 7k + 2 (với k = 79)
5553 - 1 = (7k+2)³ - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 8 - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 7 \(⋮\) 7
=> 555333 - 1 chia hết cho 7 (2)
Từ (1) và (2) => 555222 + 222555 chia hết cho 7 (đpcm)
Lời giải:
Bổ sung điều kiện $n$ là số tự nhiên khác $0$
Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)
\(4^{3^{4n+1}}\equiv 0\pmod 4\)
\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)
Vậy $A\vdots 4(*)$
Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$
$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$
$3^{4n+1}=3.81^n\equiv 3\pmod {10}$
$\Rightarrow 3^{4n+1}=10t+3$
$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$
Do đó:
$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$
Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$
Ta có đpcm.
Bạn có thể gõ lại công thức rõ hơn được không?
sao lại m chia hết cho 3 dư 1 ? vừa chia hết lại vừa có dư là sao ? -__- xem lại đề đj
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
a
Gọi số chính phương đó là \(a^2\).Do a là số nguyên nên a có dạng \(3k+1;3k+2;3k\)
Với \(a=3k\) thì \(a^2=9k^2⋮3\)
Với \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1
Với \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1
Vậy số chính phương chia 3 dư 0 hoặc 1
Gọi số chính phương đó là \(b^2\).Do b là số nguyên nên b có các dạng \(4k;4k+1;4k+2;4k+3\)
Tương tự xét như câu a nha.Ngại viết.
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Ta có : \(2^{28}-1=\left(2^{14}\right)^2-1\equiv1^2-1\left(mod9\right)\)
Vậy \(2^{28}-1⋮29\).
Tài Nguyễn Tuấn bạn có thể giải thích rõ hơn được ko?