K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

Hiệu chia hết cho 10 => hiệu tần cùng là 0

Ta có: (....9)chẵn = (....1) ; (.....9)lẻ = (.....9)

2009 lẻ => 20092009 - 2009 = (.........9) -2009 = (.....0)

=> Hiệu chia hết cho 10

5 tháng 3 2018

A=(2009+2009^2)+(2009^3+2009^4)+...+(2009^9+2009^10)

A=[2009.(1+2009)]+[2009^3.(1+2009)]+....+[2009^9.(1+2009)]

A=2009.2010+2009^3.2010+...+2009^9.2010

A=2010(2009+2009^3+2009^5+......+2009^9)  chia het cho 2010

5 tháng 3 2018

Ta có :

\(A=2009+2009^2+2009^3+2009^4+....+2009^{10}\)

Tổng A có số số hạng là :

( 10 - 1 ) : 1 + 1 = 10 ( số hạng )

Vì \(10⋮2\)nên khi ta nhóm 2 số liên tiếp lại thành một căp thì không thừa số nào cả 

\(\Rightarrow A=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+....+\left(2009^9+2009^{10}\right)\)

\(\Rightarrow A=2009.\left(1+2009\right)+2009^3.\left(1+2009\right)+....+2009^9.\left(1+2009\right)\)

\(\Rightarrow A=2009.2010+2009^3.2010+....+2009^9.2010\)

\(\Rightarrow A=2010.\left(2009+2009^3+....+2009^9\right)\)

Vì \(2009+2009^3+....+2009^9\inℤ\)nên \(2010.\left(2009+2009^3+....+2009^9\right)\inℤ\)

Vì \(2010⋮2010\)nên \(A⋮2010\)

Vậy \(A=2009+2009^2+2009^3+....+2009^{10}⋮2010\left(ĐPCM\right)\)

2 tháng 6 2015

Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:

 \(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)

\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)

\(=2009^{2008}-1\)

\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)

\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008

=> ĐPCM

 

2 tháng 6 2015

Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.

Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008

Ta có:

+)A=2009+20092+20093+20094+...+20092009

  2009A= 20092+20093+20094+...+20092010

   2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)

  2008A=20092010- 2009

=> A=(20092010- 2009)/2008 

=> A chia hết cho 2008.

B=1+2009+20092+20093+20094+...+20092008

2009B=2009+20092+20093+20094+...+20092010

2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)

2008B=20092010-1

=>B=(20092010-1)/2008

=>B chia hết cho 2008

=> A-B chia hết cho 2008.

=> ĐPCM

 

 

             

13 tháng 2 2017

Do 2009 đồng dư với 1 (mod 2008)

=> 20092009 đồng dư với 12009 hay đồng dư với 1 (mod 2008)

=> 20092009-1 đồng dư với 0 (mod 2008)

Vậy 20092009-1\(⋮\)2008

19 tháng 2 2017

xét \(A=1+14+14^2+14^3+...+14^{13}\) (*)

Tính tổng trên có \(A=\frac{14^{14}-1}{13}\) (**)

(*) hiển nhiên A là tỏng của các số tự nhiên do vậy phải tự nhiên

(**) \(A\in N\Rightarrow14^{14}-1⋮13\) +> dpcm

p/s: để tính tổng (*) có lẽ bạn biết rồi

5 tháng 1 2016

\(54787\)