Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(43^{2004}+43^{2005}\)
\(=43^{2004}+43^{2004}.43\)
\(=43^{2004}.\left(1+43\right)\)
\(=43^{2004}.44\)
\(=43^{2004}.4.11\)chia het cho 11
b)\(27^3+9^5\)
\(=3^9+3^{10}\)
\(=3^9\left(1+3\right)\)
\(=3^9.4\)chia het cho 4
a)
Ta có :
A = 432004 + 432005 = 432004 . ( 1 + 43 ) = 432004 . 44
Có : 44 \(⋮\)11
=> A chia hết cho 11
=> ĐPCM
b)
Ta có :
B = 273 + 95 = 39 + 310 = 39 . ( 1 + 3 ) = 39 . 4
Có :
4\(⋮\)4
=> B \(⋮\)4
=> ĐPCM
nha !!!
ta có \(35^{2005}-35^{2004}=35^{2004}.35-35^{2004}=35^{2004}.\left(35-1\right)=35^{2004}.34\)
do \(34⋮17\Rightarrow35^{2004}.34⋮17\left(đpcm\right)\)
=352004(35-1)
= 352004.34
do 34chia hết cho 17
=>352005-352004 chia hết cho 17 (đpcm)
43^2004+43^2005=43^2004+43^2004.43
=43^2004.(1+43)
=43^2004.44
Ta có 43^2004 + 43^2005 = 43^2004 + 43^2004 x 43
=43^2004 x (43 + 1) =43^2004 x 44
=43^2004 x 11 x 4 chia hết cho 11
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Ta có n 2 (n + 1) + 2n(n + 1) = ( n 2 + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)
Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2
⇒ n(n + 1) ⋮ 2
n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3
⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1
vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
(n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)
Ta có : 2005n+1 - 2005n
= 2005n ( 2005 - 1 )
= 2005n . 2004 luôn chia hết cho 2004
Vậy 2005n+1 - 2005n luôn chia hết cho 2004