K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

Ta có : 2005n+1 - 2005n 

         =  2005( 2005 - 1 )

         = 2005n . 2004 luôn chia hết cho 2004 

Vậy 2005n+1 - 2005n luôn chia hết cho 2004

2 tháng 8 2021

Mà \(125⋮5\Rightarrow\left(2n-1\right)^3+75⋮5\) mà \(75⋮5\Rightarrow\left(2n-1\right)^3⋮5\)

Vì 5 nguyên tố \(\Rightarrow2n-1⋮5\Rightarrow\left(2n-1\right)^3⋮125\) nhưng 75 \(⋮̸\)125 (vô lí)

Vậy \(4n^3-6n^2+3n+37\)\(⋮̸\)125

3 tháng 8 2021

.

26 tháng 8 2017

a)\(43^{2004}+43^{2005}\)

\(=43^{2004}+43^{2004}.43\)

\(=43^{2004}.\left(1+43\right)\)

\(=43^{2004}.44\)

\(=43^{2004}.4.11\)chia het cho 11

b)\(27^3+9^5\)

\(=3^9+3^{10}\)

\(=3^9\left(1+3\right)\)

\(=3^9.4\)chia het cho 4

a)

 Ta có :  

 A = 432004 + 432005 = 432004 . ( 1 + 43 ) = 432004 . 44

Có :  44 \(⋮\)11

=> A chia hết cho 11 

=> ĐPCM

b)

Ta có :

        B = 273 + 95 = 39 + 310 = 39 . ( 1 + 3 ) = 39 . 4

Có : 

        4\(⋮\)4

=> B \(⋮\)4

=> ĐPCM

        nha !!!

19 tháng 9 2017

ta có \(35^{2005}-35^{2004}=35^{2004}.35-35^{2004}=35^{2004}.\left(35-1\right)=35^{2004}.34\)

do \(34⋮17\Rightarrow35^{2004}.34⋮17\left(đpcm\right)\)

19 tháng 9 2017

=352004(35-1)

= 352004.34

do 34chia hết cho 17

=>352005-352004 chia hết cho 17 (đpcm)

27 tháng 9 2016

43^2004+43^2005=43^2004+43^2004.43

=43^2004.(1+43)

=43^2004.44

29 tháng 9 2016

Ta có 43^2004  + 43^2005 = 43^2004 + 43^2004 x 43 

=43^2004 x (43 + 1) =43^2004 x 44

=43^2004 x 11 x 4 chia hết cho 11

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

26 tháng 12 2018

Ta có  n 2  (n + 1) + 2n(n + 1) = ( n 2  + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)

Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2

⇒ n(n + 1) ⋮ 2

n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3

⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1

vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n

15 tháng 10 2021

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số nguyên liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)

hay \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)

30 tháng 10 2021

\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

9 tháng 6 2017

   n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
   (n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)

13 tháng 9 2017

Bằng 3(-n^2-1) 

Ls