Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2002^n\times2005^{n+1}=2002^n\times2005^n\times2005=\left(2002\times2005\right)^n\times2005\)
\(2002\times2005\) có chữ số tận cùng là 0
\(\Rightarrow\left(2002\times2005\right)^n\) có chữ số tận cùng là 0
\(\Rightarrow\left(2002\times2005\right)^n\times2005\) có chữ số tận cùng là 0 nên chia hết cho 2; 5 và 10.
Để 2002k . 2005k+1 chia hết cho 2, 5 và 10 thì phải có chữ số tận cùng là 0
Ta có : 2002k . 2005k+1 = 2002k . 2005k . 2005 = (2002 . 2005)k . 2005 = (.....0)k . 2005 = .....0 . 2005 = ........0 \(⋮\)2 , 5 và 10
Vậy 2002k . 2005k+1 chia hết cho 2 , 5 và 10
\(2002^k\cdot2005^{k+1}\)
\(=2002^k\cdot2005^k\cdot2005\)
\(=\left(2002\cdot2005\right)^k\cdot2005\)
\(=4014010^k\cdot2005\)
Vì 4 014 010k là 1 số chẵn, mà 2005 nhân với 1 số chẵn được 1 số có tận cùng là 0.
Vì các số có tận cùng là 0 luôn chia hết cho 2, 5 và 10.
Vậy ...........
=))
có (n+2003^2004)
nếu n là số lẻ thì(n+2003^2004) là số chẵn
nếu n là số chẵn thì(n+2003^2004) là số lẻ
có (n+2003^2004)
nếu n là số lẻ thì(n+2003^2004) là số lẻ
nếu n là số chẵn thì(n+2003^2004) là số chẵn
chẵn x lẻ =chẵn
lẻ x chẵn=chẵn
=>(n+2003^2004)x(n+2004^2005) chia hết cho 2
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)