Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết Đề bài thứ nhất
= 9999931996.9999933-5555571996-555557
=9999934.499.9999933-5555574.499.555557
=....1*...7-...1*555557
=....7-...7
=....0 chia hết cho 5
Ta đi chứng minh \(A⋮2,A⋮5\)
+) Ta có : \(A=99999^{1999}-555557^{1997}\equiv1-1\equiv0\left(mod2\right)\)
\(\Rightarrow A⋮2\)
Lại có : \(99999\equiv\left(-1\right)\left(mod5\right)\)
\(\Rightarrow99999^{1999}\equiv\left(-1\right)\left(mod5\right)\)
Vì \(555557\equiv2\left(mod5\right)\)
\(\Rightarrow555557^{1997}\equiv2^{1997}\left(mod5\right)\)
Ta thấy rằng : \(2^2=4\equiv\left(-1\right)\left(mod5\right)\)
\(\Rightarrow\left(2^2\right)^{998}\equiv1\left(mod5\right)\)
\(\Rightarrow2^{1996}\equiv1\left(mod5\right)\)
\(\Rightarrow2^{1997}\equiv2\left(mod5\right)\)
Do đó : \(555557^{1997}\equiv2\left(mod5\right)\)
Vậy \(A\equiv\left(-1\right)-2\equiv\left(-3\right)\left(mod5\right)\)
Hum.... đề sai.
2.
a,\(50-\left[\left(50-2^3.5\right):2+3\right]\)
\(=50-\left[\left(50-40\right):2+3\right]\)
\(=50-\left(10:2+3\right)\)
\(=50-8\)
\(=42\)
b,\(8697-\left[3^7:3^5+2\left(13-3\right)\right]\)
\(=8697-\left(3^2+2.10\right)\)
\(=8697-\left(9+20\right)\)
\(=8697-29\)
\(=8668\)
c,\(205-\left[1200-\left(4^2-2.3\right)^3\right]:40\)
\(=205-200:40\)
\(=200\)
2)
a) \(50-\left[\left(50-2^3.5\right):2+3\right]\)
\(=50-\left[\left(50-8.5\right):2+3\right]\)
\(=50-\left[\left(50-40\right):2+3\right]\)
\(=50-\left(10:2+3\right)\)
\(=50-\left(5+3\right)\)
\(=50-8\)
\(=42\)
b) \(8697-\left[3^7:3^5+2\left(13-3\right)\right]\)
\(=8697-\left(3^7:3^5+2.10\right)\)
\(=8697-\left(3^{7-5}+2.10\right)\)
\(=8697-\left(3^2+2.10\right)\)
\(=8697-\left(9+2.10\right)\)
\(=8697-\left(9+20\right)\)
\(=8697-29\)
\(=8668\)
c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]:40\)
\(=205-\left[1200-\left(16-2.3\right)^3\right]:40\)
\(=205-\left[1200-\left(16-6\right)^3\right]:40\)
\(=205-\left(1200-10^3\right):40\)
\(=205-\left(1200-1000\right):40\)
\(=205-200:40\)
\(=205-5\)
\(=200\)
Ta có \(\left(...9\right)^2=\left(...1\right)\)
\(\left(...9\right)^{1999}=\left(...9\right)^{2.999+1}=\left(...1\right).\left(9\right)=\left(...9\right)\)
\(\left(...7\right)^4=\left(...1\right)\)
\(\left(...7\right)^{4.499+1}=\left(...1\right).\left(...7\right)=\left(...7\right)\)
A có tận cùng là 2 không chia hết cho 5
Vậy không thể chứng minh a chia hết cho 5
Áp dụng quy tắc tìm số tận cùng ta có:
16281997 sẽ có tận cùng là M8
1292 sẽ có tận cùng là N2
Như vậy 16281997 +12921997 chia hết cho 10 ( vì chữ số tận cùng của tổng này sẽ là 0 )