K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

Áp dụng quy tắc tìm số tận cùng ta có:

16281997  sẽ có tận cùng là M8

1292 sẽ có tận cùng là N2

Như vậy 16281997 +12921997 chia hết cho 10 ( vì chữ số tận cùng của tổng này sẽ là 0 )

14 tháng 2 2018

Viết Đề bài thứ nhất 

= 9999931996.9999933-5555571996-555557

=9999934.499.9999933-5555574.499.555557

=....1*...7-...1*555557

=....7-...7

=....0 chia hết cho 5

17 tháng 8 2020

Ta đi chứng minh \(A⋮2,A⋮5\)

+) Ta có : \(A=99999^{1999}-555557^{1997}\equiv1-1\equiv0\left(mod2\right)\)

\(\Rightarrow A⋮2\)

Lại có : \(99999\equiv\left(-1\right)\left(mod5\right)\)

\(\Rightarrow99999^{1999}\equiv\left(-1\right)\left(mod5\right)\)

Vì \(555557\equiv2\left(mod5\right)\)

\(\Rightarrow555557^{1997}\equiv2^{1997}\left(mod5\right)\)

Ta thấy rằng : \(2^2=4\equiv\left(-1\right)\left(mod5\right)\)

\(\Rightarrow\left(2^2\right)^{998}\equiv1\left(mod5\right)\)

\(\Rightarrow2^{1996}\equiv1\left(mod5\right)\)

\(\Rightarrow2^{1997}\equiv2\left(mod5\right)\)

Do đó : \(555557^{1997}\equiv2\left(mod5\right)\)

Vậy \(A\equiv\left(-1\right)-2\equiv\left(-3\right)\left(mod5\right)\)

Hum.... đề sai.

17 tháng 8 2020

Cảm ơn bạn nha nhưng mình nghĩ là đề không sai đâu

23 tháng 11 2017

2.

a,\(50-\left[\left(50-2^3.5\right):2+3\right]\)

\(=50-\left[\left(50-40\right):2+3\right]\)

\(=50-\left(10:2+3\right)\)

\(=50-8\)

\(=42\)

b,\(8697-\left[3^7:3^5+2\left(13-3\right)\right]\)

\(=8697-\left(3^2+2.10\right)\)

\(=8697-\left(9+20\right)\)

\(=8697-29\)

\(=8668\)

c,\(205-\left[1200-\left(4^2-2.3\right)^3\right]:40\)

\(=205-200:40\)

\(=200\)

24 tháng 11 2017

2)

a) \(50-\left[\left(50-2^3.5\right):2+3\right]\)

\(=50-\left[\left(50-8.5\right):2+3\right]\)

\(=50-\left[\left(50-40\right):2+3\right]\)

\(=50-\left(10:2+3\right)\)

\(=50-\left(5+3\right)\)

\(=50-8\)

\(=42\)

b) \(8697-\left[3^7:3^5+2\left(13-3\right)\right]\)

\(=8697-\left(3^7:3^5+2.10\right)\)

\(=8697-\left(3^{7-5}+2.10\right)\)

\(=8697-\left(3^2+2.10\right)\)

\(=8697-\left(9+2.10\right)\)

\(=8697-\left(9+20\right)\)

\(=8697-29\)

\(=8668\)

c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]:40\)

\(=205-\left[1200-\left(16-2.3\right)^3\right]:40\)

\(=205-\left[1200-\left(16-6\right)^3\right]:40\)

\(=205-\left(1200-10^3\right):40\)

\(=205-\left(1200-1000\right):40\)

\(=205-200:40\)

\(=205-5\)

\(=200\)

10 tháng 3 2016

Ta có \(\left(...9\right)^2=\left(...1\right)\)

         \(\left(...9\right)^{1999}=\left(...9\right)^{2.999+1}=\left(...1\right).\left(9\right)=\left(...9\right)\)

         \(\left(...7\right)^4=\left(...1\right)\)

         \(\left(...7\right)^{4.499+1}=\left(...1\right).\left(...7\right)=\left(...7\right)\)

A có tận cùng là 2 không chia hết cho 5

Vậy không thể chứng minh a chia hết cho 5