Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{15}-\dfrac{1}{18}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{18}\right)=\dfrac{1}{3}\cdot\dfrac{5}{18}=\dfrac{5}{54}\)
Đặt \(A=\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{96\cdot99}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{99}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{99}\)
\(\Rightarrow A=\frac{32}{99}\)
\(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{96.99}\)
\(=\frac{3}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{99}\right)\)
\(=1.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=1.\frac{32}{99}\)
\(=\frac{32}{99}\)
\(S=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{219.222}\)
\(\Rightarrow3S=\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{219.222}\)
\(=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{219}-\frac{1}{222}\)
\(=\frac{1}{3}-\frac{1}{222}< \frac{1}{3}\)
\(\Rightarrow S< \frac{1}{9}< 1\)
\(\Rightarrow S< 1\left(đpcm\right)\)