Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
1002 > 99 . 100
1012 > 100 . 101
..............
2002 > 199. 200
=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)
=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\) \(\left(1\right)\)
Tương tự ta có :
A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)
=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)
=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)
=> A > \(\frac{1}{200}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)Ta có :
\(\frac{1}{200}< A< \frac{1}{99}\)
=> ĐPCM
Ta có: a = (1 - 1/2) + (1 - 1/4) + (1 - 1/6) +...+ (1 - 1/80)
= (1 + 1 + 1 +...+ 1) - (1/2 + 1/4 + 1/6 + ... + 1/80)
= 40 - ...
a) Mỗi biểu thức M và N đều có 50 thừa số
Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
Vậy \(M< N\)
b) \(M.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)
\(=\frac{1}{101}\)
c) Vì \(M< N\)nên \(M.M< M.N\)hay \(M.M< \frac{1}{101}< \frac{1}{100}\). Do đó \(M.M< \frac{1}{100}=\frac{1}{10}.\frac{1}{10}\)suy ra \(M< \frac{1}{10}\)( Vì \(M>0\))