Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình đang cần gấp, tầm khoảng 30 phút nữa là phải nộp. bạn nào xong sớm mình sẽ cho. Thanks!
a)2014 + 2014^2 + 2014^3 + ... + 2014^10
=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)
=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)
=2014.2015+2014^3.2015+...+2014^9.2015
vì 2014.2015 chia hết cho 2015
2014^3.2015 chia hết cho 2015
.....
2014^9.2015 chia hết cho 2015
=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015
vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015
a,2014+20142+20143+....+201410
=(2014+20142)+(20143+20144)+.....+(20149+201410)
=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)
=2014.2015+20143.2015+..........+20149.2015
=2015.(2014+20143+...........+20149) \(^._:\)2015 (đpcm)
b,4n+1\(^._:\)n+1
4n+4 -3\(^._:\)n+1
Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1
=>n+1\(\in\){1; -1; 3; -3}
n+1 | n |
1 | 0 |
-1 | -2 |
3 | 2 |
-3 | -4 |
KL: n\(\in\){0; 2; -2; -4}
a) 101234 + 2 = 100...00 (1234 chữ số 0) + 2 = 100...002 (1233 chữ số 0) có tổng các chữ số là : 1 + 2 = 3 nên chia hết cho 3
b) Sửa đề thành 10789 + 8
10789 + 8 = 100..00 (789 chữ số 0) + 8 = 100...008 (788 chữ số 0) có tổng các chữ số là : 1 + 8 = 9 nên chia hết cho 9
Bài giải
Ta có: C = 2014 + 20142 + 20143 +...+ 20142018
=> C = (2014.1 + 2014.2014) + (20142.1 + 20142.2014) +
(20143.1 + 20143.2014) +...+
(20142017.1 + 20142017.2018)
=> C = 2014.(2014 + 1) + 20143.(2014 + 1) +...+ 20142017.(2014 + 1)
=> C = (2014 + 20143 +...+ 20142017).(2014 + 1)
=> C = 2015.(2014 + 20143 +...+ 20142017
Vì 2015."viết lại" \(⋮\)2015
Nên C \(⋮\)2015
Vậy...
Lời giải:
Ta có:
$1234\equiv -1\pmod {19}$
$\Rightarrow 1234^{30}\equiv (-1)^{30}\equiv 1\pmod {30}$
$\Rightarrow 1234^{30}-1388\equiv 1-1388\equiv -1387\equiv 0\pmod {19}$
$\Rightarrow 1234^{30}-1388\vdots 19(*)$
Hiển nhiên $1234^{30}-1388\vdots 2$ (do là hiệu của 2 số chẵn) $(**)$
$1234\equiv 15\pmod {53}$
$\Rightarrow 1234^{30}\equiv 15^{30}\pmod {30}$
$\equiv (15^2)^{15}\equiv 13^{15}=(13^3)^5\equiv 24^5$
$\equiv (24^2)^2.24\equiv 46^2.24\equiv 10\pmod {53}$
$\Rightarrow 1234^{30}-1388\equiv 10-1388\equiv 0\pmod {53}$
Hay $1234^{30}-1388\vdots 53(***)$
Từ $(*); (**); (***)$ mà $2,19,53$ đôi một nguyên tố cùng nhau nên $1234^{30}-1388\vdots (2.19.53=2014)$