K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

 \(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

......

\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)

hay \(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}=\dfrac{9}{10}< 1\) ( đpcm )

Ta có \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)

         \(\dfrac{1}{3.3}\)<\(\dfrac{1}{2.3}\)

         \(\dfrac{1}{4.4}\)<\(\dfrac{1}{3.4}\)

  .........................

         \(\dfrac{1}{10.10}\)<\(\dfrac{1}{9.10}\)

=>\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

=> D <  1 - \(\dfrac{1}{10}\)

=>D < \(\dfrac{9}{10}\)

=> D < \(\dfrac{10}{10}\)

 Vậy D < 1

A=1/2^2+1/3^2+...+1/10^2

=>A<1-1/2+1/2-1/3+...+1/9-1/10=1-1/10<1

17 tháng 6 2021
Kết bạn với mình thì mk mới trả lời
22 tháng 8 2023

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(.....\)

\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)

\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)

\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}< 1\)

\(\Rightarrow B< 1\left(dpcm\right)\)

22 tháng 8 2023

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\)

 \(B< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{9\times10}\)

 \(B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(B< 1-\dfrac{1}{10}\)

\(B< \dfrac{9}{10}< 1\)

Vậy \(B< 1\)

16 tháng 6 2020

Ta có : \(\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}\)   (8 số hạng)

\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}.8=\frac{1}{4}< \frac{1}{2}\)

\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{2}\left(đpcm\right)\)

16 tháng 6 2020

\(A=\frac{1}{32}+\frac{1}{42}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}=\frac{8}{32}< \frac{16}{32}=\frac{1}{2}\)

Vậy \(A< \frac{1}{2}\)