Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
- Có: \(P>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)
=> \(P>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
=> \(P>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)
=> \(P>\frac{1}{6}\)(1)
- Có: \(P< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
=> \(P< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
=> \(P< \frac{1}{4}-\frac{1}{100}< 14\)(2)
Từ (1) và (2)
=> \(\frac{1}{6}< P< 14\)(Nếu đề là 1/6 < P < 1/4 thì thay số 14 bằng 1/4 vẫn đúng nhé)
=> Đpcm
\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{2012^2}=\frac{1}{2012.2012}<\frac{1}{2011.2012}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{2011.2012}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{2011}-\frac{1}{2012}=\frac{1}{1}-\frac{1}{2012}=\frac{2011}{2012}<1\)
=>đpcm
Đặt vế trái là A ta có
\(A<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}=\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}\)
=> A<1