Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
100 - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)
= (1 + 1 + 1 + 1 + ... + 1) - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)
100 số 1 100 phân số
= (1 - 1) + (1 - 1/2) + (1 - 1/3) + (1 - 1/4) + ... + (1 - 1/100)
= 1/2 + 2/3 + 3/4 + ... + 99/100 ( đpcm)
ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết
ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết
Bạn cộng biểu thức trong ngoặc của vế trái với vế phải là ra 100
Ta có:
\(100-\left(1+\frac{1}{2}+\frac{1}{3}=...+\frac{1}{100}\right)\)
\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
Chuyển vế đổi dấu:
\(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
=>\(100=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}+1+\frac{1}{2}+...+\frac{1}{100}\)
=>100=1+1+1+...+1
=>100=100
Vậy \(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
Đặt A là vế trái , B là vế phải
Ta có: \(B=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=A\)
Vậy A = B
\(a.A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(2A-A=1-\frac{1}{2^{99}}\)
\(A=1-\frac{1}{2^{99}}< 1\)
\(b.B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\)
Ủng hộ mk nha ^_^
100-(1+1/2+1/3+1/4+...+1/100)= (1+1+1+..+1)+(1+1/2+1/3+1/4+...+1/100) = (1-1)+(1-1/2)+(1-/3)+...+(1-1/100)
= 1/2+2/3+3/4+...+99/100 (đpcm)
cíu em vớiii
Ta có:1/2^2<1/1.2; 1/3^2<1/2.3;.....
=>1/2^2+1/3^2+1/4^2+1/5^2+...+1/100^2
<1/1.2+1/2.3+1/3.4+1/4.5+....+1/99.100(bạn ghi dấu "<" ở trên cũng được)
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/99-1/100
=1/1-1/100=99/100
Mà 99/100<1
=>1/2^2+1/3^2+1/4^2+1/5^2+...+1/100^2<1