Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)Ta có:
\(A=3+3^2+3^3+...+3^{10}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)
\(=4\left(3+3^3+...+3^9\right)⋮4\)
\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)
\(\Rightarrow\)ĐPCM
a,
102016+2=10...0+2=99...9+1+2=99...9+3
Vì 99...9 và 3 đều chia hết cho 3 nên 102016 chia hết cho 3
b,
102016-1=10...0-1=99...9
Vì 99...9 chia hết cho 9 nên 102016 chia hết cho 9
10^2015+2=1000...0(2015 chữ số 0) +2=>1+0+0+..+0+2=3 chia hết 3 (đpcm)
câu dưới tương tự nha
Ta có 102015+2= {10.10....10} + 2 =100..02 . Tổng các chữ số là 1+0+...+2=3
2015 thứ số 10
Do lũy thừa trên có tổng các chữ số là3 nên chia hết cho 3
câu b tương tự
a) Ta có: \(10^{2017}-1=100...0\)(2017 chữ số 0) - 1 = 99...9 (2017 chữ số 9)
Do \(99...99⋮9\Rightarrow10^{2017}-1⋮9\). Mà số chia hết cho 9 thì chia hết cho 3.
b) Ta có: \(10^{2020}+8=100...0\)(2020 chữ số 0) +8
Ta thấy tổng của số trên là \(1+0+0+...+0+8=9⋮9\Rightarrow10^{2020}+8⋮9\) mà số chia hết cho 9 thì chia hết cho 3.
c) Ta có: \(10^{2016}+8=10...0\)(2016 chữ số 0) + 8= \(10...008\)
Tổng của số trên là 9 nên số trên chia hết cho 9.
Ta lại có 3 chữ số tận cùng của sô trên chia hết cho 8 => số trên chia hết cho 8
=> Số trên chia hết cho 8.9=72
10^2017+10^2016+10^2015
=10^2015.(10^2+10+1)=10^2015.111
=10^2014.10.111=10^2014.2.5.111=10^2014.2.555 chia hết cho 555
10^2017 + 10^2016 + 10^2015
= 10^2015(10^2+10+1)
= 10^2015.111
= 10^2014.10.111
= 10^2014.2.5.111
= 10^2014.2.555
mà 555 chia hết cho 555
<=> 10^2014.2.555 chia hết 555
vậy( 10^2017 +- 10^2016 + 10^2015) chia hết cho 555
10^2016+2 chia hết cho 3
=10.......0000+2 chia hết cho 3
Tổng các số cộng lại=3
Vì 3 chia hết cho 3
=>10^2016+2 chia hết cho 3
10^2016-1 chia hết cho 9
=10.....0000-1 chia hết cho 3
Hiệu các số=9
Vì 9 chia hết cho 9
=>10^2016-1 chia hết cho 9