K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)

                                                     \(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)

                                                        = \(\left(x^2+2\right)\left(x^2+x+1\right)\)

Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)

Suy ra , đa thức trên vô nghiệm 

7 tháng 5 2016

Đặt đa thức đó là A

Ta có: \(A=2\left(x^2+x+\frac{3}{2}\right)=2\left(x^2+2\times x\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)\)

\(A=2\left(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right)\)

\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\)

\(A\ge\frac{5}{2}>0\)

Vậy A vô nghiệm

7 tháng 5 2016

2x^2>=0 voi moi x 

2x >=0 với mọi x 

3>0

Vậy đa thức trên vô nghiệm

5 tháng 5 2016

Ta có: -2x^2+x-3=-x^2-x^2+x-1/4-11/4= -(x^2-x+1/4)-x^2-11/4= -(x-1/2)^2-x^2-11/4

Đa thức trên luôn bé hơn 0. Do đó đa thức trên ko có nghiệm

5 tháng 5 2016

Ta có : -2x2+x  >/ 0

     => -2x2+x-3 >/ -3 < 0

 Vậy đa thức trên không có nghiệm (vô nghiệm)

5 tháng 7 2018

Sửa đề \(2x^2-x^2+9\)

\(=x^2+9\)

Do \(x^2\ge0\)

\(\Rightarrow x^2+9\ge9\)

Vậy đa thức trên vô nghiệm

5 tháng 7 2018

\(2x^2-x^2-9=x^2-9=\left(x-3\right)\left(x+3\right)\)

Where is VT ?

1 tháng 5 2016

=2x2-3/2x-3/2x+9/4+11/4=x2+x2-3/2x-3/2x+9/4+11/4=x2+x(x-3/2)-3/2(x-3/2)+11/4

=x2+(x-3/2)2+11/4 

do x2+(x-3/2)2>0=>x2+(x-3/2)2+11/4>11/4>0 Vx

=>2x2-3x+5 vo nghiem

1 tháng 5 2016

Ta có: \(2x^2-3x+5=\) \(2\left(x^2-\frac{3}{2}x+\frac{5}{2}\right)\)

                                       \(=2\left(x^2-2x.\frac{3}{4}+\frac{9}{16}\right)+\frac{31}{8}\)

                                       \(=2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\) (áp dụng hằng đẳng thức)

Vì \(\left(x-\frac{3}{4}\right)^2\ge0\) nên \(2\left(x-\frac{3}{4}\right)^2\ge0\)

\(\Rightarrow2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)

Vậy đa thức \(2x^2-3x+5\) ko có nghiệm

12 tháng 6 2017

1) a) 9x+2x-x=0

11x-x=0

10x=0

x=0

b) 25-9x=0

9x=25

x=25/9

2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)

\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)

\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)

mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm

12 tháng 6 2017

1)

a) Ta có :

9x + 2x - x = 0

( 9 + 2 - 1 )x = 0

10x = 0

x = 0 : 10

x = 0

Vậy x = 0 là nghiệm của đa thức 9x + 2x - x

b) Ta có :

25 - 9x = 0

9x = 25

x = 25 ; 9

x = 25/9

Vậy x = 25/9 là nghiệm của đa thức 25 - 9x

2. Ta có :

Vì x2 luôn > 0 với mọi giá trị của x

x4 luôn lớn hơn 0 với mọi giá trị x

1 > 0

Vậy x2 + x4 + 1 > với mọi giá trị x

Hay da thức x2 + x4 + 1 vô nghiệm