![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)
\(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
= \(\left(x^2+2\right)\left(x^2+x+1\right)\)
Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)
Suy ra , đa thức trên vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt đa thức đó là A
Ta có: \(A=2\left(x^2+x+\frac{3}{2}\right)=2\left(x^2+2\times x\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)\)
\(A=2\left(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right)\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\)
\(A\ge\frac{5}{2}>0\)
Vậy A vô nghiệm
2x^2>=0 voi moi x
2x >=0 với mọi x
3>0
Vậy đa thức trên vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: -2x^2+x-3=-x^2-x^2+x-1/4-11/4= -(x^2-x+1/4)-x^2-11/4= -(x-1/2)^2-x^2-11/4
Đa thức trên luôn bé hơn 0. Do đó đa thức trên ko có nghiệm
Ta có : -2x2+x >/ 0
=> -2x2+x-3 >/ -3 < 0
Vậy đa thức trên không có nghiệm (vô nghiệm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề \(2x^2-x^2+9\)
\(=x^2+9\)
Do \(x^2\ge0\)
\(\Rightarrow x^2+9\ge9\)
Vậy đa thức trên vô nghiệm
\(2x^2-x^2-9=x^2-9=\left(x-3\right)\left(x+3\right)\)
Where is VT ?
![](https://rs.olm.vn/images/avt/0.png?1311)
=2x2-3/2x-3/2x+9/4+11/4=x2+x2-3/2x-3/2x+9/4+11/4=x2+x(x-3/2)-3/2(x-3/2)+11/4
=x2+(x-3/2)2+11/4
do x2+(x-3/2)2>0=>x2+(x-3/2)2+11/4>11/4>0 Vx
=>2x2-3x+5 vo nghiem
Ta có: \(2x^2-3x+5=\) \(2\left(x^2-\frac{3}{2}x+\frac{5}{2}\right)\)
\(=2\left(x^2-2x.\frac{3}{4}+\frac{9}{16}\right)+\frac{31}{8}\)
\(=2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\) (áp dụng hằng đẳng thức)
Vì \(\left(x-\frac{3}{4}\right)^2\ge0\) nên \(2\left(x-\frac{3}{4}\right)^2\ge0\)
\(\Rightarrow2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)
Vậy đa thức \(2x^2-3x+5\) ko có nghiệm
1. Tìm nghiệm của đa thức sau :
a) 9x + 2x - x
b) 25 - 9x
2. Chứng minh đa thức vô nghiệm :
x2 + x4 + 1
![](https://rs.olm.vn/images/avt/0.png?1311)
1) a) 9x+2x-x=0
11x-x=0
10x=0
x=0
b) 25-9x=0
9x=25
x=25/9
2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)
mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm
1)
a) Ta có :
9x + 2x - x = 0
( 9 + 2 - 1 )x = 0
10x = 0
x = 0 : 10
x = 0
Vậy x = 0 là nghiệm của đa thức 9x + 2x - x
b) Ta có :
25 - 9x = 0
9x = 25
x = 25 ; 9
x = 25/9
Vậy x = 25/9 là nghiệm của đa thức 25 - 9x
2. Ta có :
Vì x2 luôn > 0 với mọi giá trị của x
x4 luôn lớn hơn 0 với mọi giá trị x
1 > 0
Vậy x2 + x4 + 1 > với mọi giá trị x
Hay da thức x2 + x4 + 1 vô nghiệm