Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MK chỉ chững minh đc câu b thui!
b) Gọi (2n+1,6n+7)=d
ta có: 2n+1 \(⋮\)d => 3(2n+1)\(⋮\) d => 6n+3 \(⋮\)d (1)
6n+7 \(⋮\)d (2)
Từ (1) và(2),suy ra 6n+7-(6n+3) \(⋮\)d hay 6n+7-6n-3\(⋮\)d=> 4 \(⋮\)d
Ư(4)={1,2,4,-1,-2,-4}
Ta có 2n+1 ko chia hết cho 2,4,-2,-4
Suy ra....
(1999 + 1999^2 + 1999^3 +...+ 1999^1998)
=1999(1+1999)+1999^3(1+1999)+...+1999^1997(1+1999)
=2000(1999+1999^3+...+1999^19997)
Do 2000 chia hết cho 2000
=>2000(1999+1999^3+...+1999^19997) chia hết cho 2000
Vậy (1999 + 1999^2 + 1999^3 +...+ 1999^1998) chia hết cho 2000
S= (1999+1999^2+1999^3 +....+1999^1998)
=(1999+1999^2)+(1999^3+1999^4)+...+(1999^1997+1999^1998)
=1999(1+1999)+1999^3(1+1999)+...+1999^1997(1+1999)
=1999.2000+1999^3.2000+...+1999^1997.2000
=2000(1999+1999^3+...+1999^1997) CHIA HET CHO 2000
Vậy S chia het cho 2000(đpcm)
Ta có: A=1999+19992+19993+…+19991998
=> A=(1999+19992)+(19993+19994)+...+(19991997+19991998)
=> A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)
=> A=1999.2000+19993.2000+…+19991997.2000
=> A=(199+19993+…+199919997).2000
=> A chia hết cho 2000
=> (đpcm)
mình tự làm ko copy trong tưng tự
Gọi (1999+19992+19993+...+19991998) = S
Tổng S có : (1998-1)/1+1=1998 (số hạng)
Nếu ta cứ nhóm 2 số hạng liên tiếp kề nhau vào 1 nhóm bắt đầu từ số hạng đầu tiên thì ta được số nhóm là : 1998/2=999 (nhóm)
Ta có : S=1999+19992+19993+...+19991998
Suy ra:S=(1999+19992)+(19993+19994)+...+(19991997+19991998)
Suy ra:S=1999.(1+1999)+19993.(1+1999)+...+19991997.(1+1999)
Suy ra:S=1999.2000+19993.2000+...+19991997.2000
Suy ra:S=2000.(1999+19993+...+19991997)
Vì 2000 chia hết cho 2000 suy ra 2000.(1999+19993+...+19991997) chia hết cho 2000 hay S chia hết cho 2000
Vậy (1999+19992+19993+...+19991998) chia hết cho 2000