Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a, b, c là số nguyên dương , S = a/b+c + b/a+c + c/a+b
Chứng minh S không là số nguyên dương
Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)
p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ
a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ
=> Vô lý=> b = 0 => a = 0 => đpcm
Theo đề bài: p là số nguyên tố lớn hơn 3
=> p là số lẻ
=> p = 2k + 1 ( \(k\in z;k>1\))
=> A = (p - 1)( p +1 ) = 2k(2k+2) = 4k(k+1)
=> A chia hết cho 8 (1)
Ta lại có: p = 3n + 1 hoặc 3n - 1 (\(n\in Z,N>1\))
=> A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 24
Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:
A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.
Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.
Vậy A = (p – 1)(p + 1) chia hết cho 24
Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.
Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.
Vì p nguyên tố > 5 nên p lẻ => p + 1 chẵn => p + 1 chia hết cho 2 (1)
Xét 3 số tự nhiên liên tiếp: p; p + 1; p + 2, trong 3 số này có 1 số chia hết cho 3
Do p và p + 2 nguyên tố > 5 nên 2 số này đều không chia hết cho 3
=> p + 1 chia hết cho 3 (2)
Từ (1) và (2), mà (2;3)=1 => p + 1 chia hết cho 6 (đpcm)
với p.q là số nguyên tố lớn hơn 5 chứng minh rằng p4-q4 chia hếcho 240
giúp mình với nhé
Ta có a2012a2013 là số âm, nên tích âm.
Nếu a2014 dương, theo giả thiết thì âm nên không mất tính tổng quát, giả sử dương còn âm.
Cũng lại có âm suy ra dương.
Vậy âm nên tích 2014 số hữu tỉ là số dương.
b, Do trong 2014 số hữu tỉ luôn chọn được 2013 số, 2013 số này chia thành các nhóm gồm 3 số, trong đó tích ba số là số âm nên tích của 2013 số là số âm, mà tích của 2014 số dương nên số còn lại âm.
Như vậy nếu ta lấy 2013 số bất kì trong 2014 số thì số còn lại luôn là một số âm.
Ta suy ra 2014 số hữu tỉ đó đều là số âm.