K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)

p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ

a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ

=> Vô lý=> b = 0 => a = 0 => đpcm

29 tháng 6 2015

p là số nguyên tố=>\(\sqrt{p}\)là số vô tỉ

=>b\(\sqrt{p}\) là số vô tỉ nếu b khác 0 hoặc b\(\sqrt{p}\)=0 nếu b=0

=>a+b\(\sqrt{p}\)=0

*)b khác 0 =>a=-b\(\sqrt{p}\)

mà a là số hữ tỉ b\(\sqrt{p}\) là số vô tỉ(L)

*)b=0=>b\(\sqrt{p}\)=0=>a+0=0

=>a=0

Vậy a=b=0

21 tháng 11 2017

Theo đề bài: p là số nguyên tố lớn hơn 3

=> p là số lẻ

=> p = 2k + 1 ( \(k\in z;k>1\))

=> A = (p - 1)( p +1 ) = 2k(2k+2) = 4k(k+1)

=> A chia hết cho 8  (1)

Ta lại có: p = 3n + 1 hoặc 3n - 1 (\(n\in Z,N>1\))

=> A chia hết cho 3   (2)

Từ (1) và (2) => A chia hết cho 24

21 tháng 11 2017

Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:

A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.

Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.

Vậy A = (p – 1)(p + 1) chia hết cho 24

10 tháng 11 2018

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

9 tháng 11 2016

Vì p nguyên tố > 5 nên p lẻ => p + 1 chẵn => p + 1 chia hết cho 2 (1)

Xét 3 số tự nhiên liên tiếp: p; p + 1; p + 2, trong 3 số này có 1 số chia hết cho 3

Do p và p + 2 nguyên tố > 5 nên 2 số này đều không chia hết cho 3

=> p + 1 chia hết cho 3 (2)

Từ (1) và (2), mà (2;3)=1 => p + 1 chia hết cho 6 (đpcm)

 

24 tháng 6 2016
a, Giả sử 2014 số hữu tỉ đó là 
Ta có a2012a2013 là số âm, nên tích  âm.
Nếu a2014 dương, theo giả thiết thì  âm nên không mất tính tổng quát, giả sử  dương còn  âm.
Cũng lại có âm suy ra  dương.
Vậy  âm nên tích 2014 số hữu tỉ là số dương.

b, Do trong 2014 số hữu tỉ luôn chọn được 2013 số, 2013 số này chia thành các nhóm gồm 3 số, trong đó tích ba số là số âm nên tích của 2013 số là số âm, mà tích của 2014 số dương nên số còn lại âm.
Như vậy nếu ta lấy 2013 số bất kì trong 2014 số thì số còn lại luôn là một số âm. 
Ta suy ra 2014 số hữu tỉ đó đều là số âm.