Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong phân số mẫu luôn thuộc Z và lớn hơn 0
nên a ∈ Z và a ≠ 0
\(\frac{1}{a+1}\)nếu a=-1 thì \(\frac{1}{-1+1}\)=\(\frac{1}{0}\)mẫu khác 0 nên a ≠ -1
Ta có:
\(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{a}{a\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}=\frac{1}{a}=y\)
Đúng 100%
1) \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a}\)
Vậy: \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
\(\frac{1}{5}=\frac{1}{6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{7.6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{42}+\frac{1}{30}\)
2) \(A=\frac{n+3}{n-2}=1+\frac{5}{n-2}\)
A nhận giá trị nguyên <=> \(\frac{5}{n-2}\) nhận giá trị nguyên
<=> \(n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=> \(n=\left\{-3;1;3;7\right\}\)
Mình học dốt nên chỉ làm được bài 2 thôi :)
\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để A nhận giá trị nguyên => \(\frac{5}{n-2}\)nhận giá trị nguyên
=> \(5⋮n-2\)
=> \(n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n-2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
Đây:
Ta có: \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
\(=\frac{a+1}{a\left(a+1\right)}\)
\(=\frac{1}{a}\)
Vậy \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)=\frac{1}{a}}\)
\(\text{Ta có: }\)
\(VP=\frac{1}{a.\left(a+1\right)}=\frac{a+1-a}{a.\left(a+1\right)}=\frac{a+1}{a.\left(a+1\right)}-\frac{a}{a.\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}=VT\left(đpcm\right)\)
ĐK: a khác -1
\(\frac{a}{a\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}=\frac{1}{a}\left(đpcm\right)\)
\(\frac{1}{a+1}+\frac{1}{a.\left(a+1\right)}=\)\(\left(\frac{1}{a}+1\right)\left(\frac{1}{a+1}\right)=\frac{a+1}{a}.\frac{1}{a+1}=\frac{1}{a}\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)
\(\Rightarrow2ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(dpcm\right)\)
Ta có
1/a+1=1a/a(a+1)
=>1/a+1 + 1/a(a+1) = 1a/a(a+1) + 1/a(a+1) = 1a+1/a(a+1) =1.(a+1)/a.(a+1)=1/a => dpcm