\(Cho\)\(x+y=2\). Tính giá trị nhỏ nhất của biểu thức S = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

\(2=x+y\ge2\sqrt{xy}\)(cô - si)

\(\Rightarrow\sqrt{xy}\le1\Rightarrow xy\le1\)

Ta có \(S=x^2+y^2=\left(x+y\right)^2-2xy\)

\(=4-2xy\ge4-2=2\)

Dấu "=" khi x = y = 1

8 tháng 3 2020

Ta có: \(\left(x-y\right)^2\ge0\)\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow x^2+y^2\ge2xy\)\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Thay \(x+y=2\)vào bất phương trình ta được:\(x^2+y^2\ge\frac{2^2}{2}=\frac{4}{2}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-y=0\)\(\Leftrightarrow x=y\)

mà \(x+y=2\)\(\Rightarrow x=y=1\)

Vậy \(minS=2\)\(\Leftrightarrow x=y=1\)

8 tháng 2 2020

\(\text{ Ta có:}13B=\left(4x^2+y^2\right)\left(4+9\right)\ge\left(2.2x+1.3y\right)^2=\left(4x+3y\right)^2=1\Rightarrow B_{min}=\frac{1}{13}\)

\(\text{Dấu "=" xảy ra khi:}x=\frac{1}{13};y=\frac{3}{13}\)

8 tháng 2 2020

Áp dụng BĐT Bunhiacopxki, ta được :

\(\left(4x^2+y^2\right)\left(2^2+3^2\right)=\left[\left(2x\right)^2+y^2\right].\left(2^2+3^2\right)\ge\left[\left(2x\right).2+y.3\right]^2=\left(4x+3y\right)^2\)

\(\Leftrightarrow\left(4x^2+y^2\right)\cdot13\ge1\)

\(\Leftrightarrow4x^2+y^2\ge\frac{1}{13}\)

hay \(B\ge\frac{1}{13}\)

24 tháng 6 2017

Theo bất đẳng thức Bunhiacopxki , ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)

\(\Rightarrow2\left(x^2+y^2\right)\ge4\)

\(\Rightarrow\left(x^2+y^2\right)\ge2\)

Dấu "=" xảy ra <=> x = y = 1

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

1 tháng 5 2019

Ta có : (x+y)2+7x+7y+y2+6=0

( x2 + y2 + \(\frac{49}{4}\)+ 7x + 7y + 2xy ) + y2 - \(\frac{25}{4}\)= 0

( x + y + \(\frac{7}{2}\))2 = \(\frac{25}{4}\)- y2 \(\le\frac{25}{4}\)

\(\Rightarrow\frac{-5}{4}\le x+y+\frac{7}{2}\le\frac{5}{4}\)

\(\Rightarrow\frac{-15}{4}\le x+y+1\le\frac{-5}{4}\)

\(\Rightarrow\)...... 

1 tháng 5 2019

lon so roi,

thay -5/4 thành -5/2 ; 5/4 thành 5/2

-15/4 thành -5 ; 5/2 thành 0 

8 tháng 6 2016

Ta có: \(x\ge3y-1\) (gt).

\(\Rightarrow A=x^2+y^2\ge\left(3y-1\right)^2+y^2=9y^2-6y+1+y^2=10y^2-6y+1=10\left(y-\frac{3}{10}\right)^2+\frac{1}{10}\)

\(\Rightarrow A\ge\frac{1}{10}\Rightarrow GTNN\left(A\right)=10\)

Dấu "=" xảy ra khi \(y=\frac{3}{10};x=\frac{1}{10}\).

8 tháng 6 2016

Sửa giùm mình lại chỗ: \(x\ge1-3y\) nha, mình viết nhầm.

1 tháng 4 2017

ta đi chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)(tự chứng minh nhé, nhân chéo lên xong phân tích ra nó sẽ ra (a-b)^2/ab lớn hơn bằng 0)

\(M=\frac{18}{2xy}+\frac{17}{x^2+y^2}\ge\frac{17.4}{\left(x+y\right)^2}+\frac{1}{2xy}\)

Chứng minh được \(2xy\le\frac{\left(x+y\right)^2}{2}\forall x,y>0\)

\(\Rightarrow M\ge\frac{68}{16^2}+\frac{2}{\left(x+y\right)^2}=\frac{17}{64}+\frac{2}{16^2}=\frac{35}{128}\)

Đẳng thức xảy ra <=> x=y=8

14 tháng 11 2016

1.

a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)

b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)

2.

a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)

b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ

3. 

\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)

4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(A\ge\frac{7}{4}\)

Vậy GTNN của A là 7/4

2 tháng 9 2018

\(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^2-8x+x^2+2x-x-2\)

\(=3x^2-7x-2\)

hk tốt