Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \((x-1)^2-(x+3)(x-3)=5\)
\(\Leftrightarrow (x-1)^2-(x^2-9)=5\)
\(\Leftrightarrow x^2-2x+1-(x^2-9)=5\)
\(\Leftrightarrow -2x+10=5\Rightarrow x=\frac{5}{2}\)
b) \((x+3)^2-x(x-1)=6\)
\(\Leftrightarrow x^2+6x+9-(x^2-x)=6\)
\(\Leftrightarrow 7x+9=6\Leftrightarrow 7x=-3\Rightarrow x=\frac{-3}{7}\)
c)
Sửa lại đề: \((x-1)(x^2+x+1)+(2+x)(4-2x+x^2)=5-x\)
\(\Leftrightarrow (x-1)(x^2+x+1)+(2+x)(2^2-2x+x^2)=5-x\)
\(\Leftrightarrow x^3-1+(2^3+x^3)=5-x\)
\(\Leftrightarrow 2x^3+7=5-x\)
\(\Leftrightarrow 2x^3+x+2=0(*)\)
Bạn thử xem lại đề bài. PT này nếu giải tay thì phương pháp không phù hợp với lớp 8
thôi mk gợi ý nhé
biến đổi giả thiết như sau
(3xyz-3xy)-(3xz-3x)-(3yz-3y)+(3z-3)=x+y+z-3 =(x-1)+(y-1)+(z-1)
(=) 3(x-1)(y-1)(z-1) = (x-1)+(y-1)+(z-1)
=) 9[(x-1)(y-1)(z-1)]2=[(x-1)+(y-1)+(z-1)]2 >= 3[(x-1)(y-1)+(y-1)(z-1)+(z-1)(x-1)] (áp dụng BĐT a2+b2+c2>=ab+bc+ca)
phần còn lại bn triệt tiêu 3 mỗi vế là xong
năm mới chúc bn hc tốt, chăm chỉ và nghe lời cha mẹ
Câu 3 :
Có \(\frac{n^6+206}{n^2+2}=n^2+2n^2+4+\frac{198}{n ^2}\)
Để \(n^2+2\) là ước số của \(n^6+206\) mà \(n^2+2\in Zv\text{à}n^2+2>0\forall n\)
=> n^2 +2 thuộc tập ước dương của 198
Lập bảng ta được các giá trị n thỏa mãn là : 1,2,3,4,8,14
Kl:...
Câu 1 :
Xét a+b+c=0 \(\Rightarrow\left\{{}\begin{matrix}a+c=-b\\b+c=-a\\a+b=-c\end{matrix}\right.\)
\(\Rightarrow A=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=-1\)
Xét a+b+c \(\ne0\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a+c=2b\\b+c=2a\\a+b=2c\end{matrix}\right.\)
mà a,b,c đôi một khác nhau và khác 0
\(\Rightarrow Lo\text{ại}\)
Vậy A=-1
We have:
\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)
Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)
Dau '=' xay ra khi \(x=y=z=1\)
\(a.\Leftrightarrow x^2+x-6+2x^2+4x+2=x^2-6x+9-2x^2+4x\)
\(\Leftrightarrow4x^2+7x-13=0\)(pt vô nghiệm)
\(b.\Leftrightarrow x^3+3x^2+3x+1-x^2+2x+8=x^3-8+2x^2\)
\(\Leftrightarrow5x=-17\Rightarrow x=\frac{-17}{5}\)
Đặt \(t=x^2+2x+2\left(t\ge1\right)\)
\(c.\Leftrightarrow\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\)\(\Leftrightarrow\frac{t^2-1+t^2}{t^2+t}=\frac{7}{6}\)\(\Leftrightarrow12t^2-6=7t^2+7t\)
\(\Leftrightarrow5t^2-7t-6=0\Rightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=\frac{-3}{5}\left(l\right)\end{cases}}\)
\(\Rightarrow x^2+2x+2=2\Rightarrow x=-2\)