K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)

=>\(AH\cdot DC=CE\cdot AD\)

c: Ta có: ΔAHD~ΔCED

=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)

=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

Xét ΔDAC và ΔDHE có

\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)

Do đó: ΔDAC~ΔDHE

d: Xét ΔCAF có

AE,CH là các đường cao

AE cắt CH tại D

Do đó: D là trực tâm của ΔCAF

=>DF\(\perp\)AC

mà AB\(\perp\)AC

nên DF//AB

Xét ΔHDF vuông tại H và ΔHBA vuông tại H có

HD=HB

\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)

Do đó: ΔHDF=ΔHBA

=>HF=HA

=>H là trung điểm của AF

Xét tứ giác ABFD có

H là trung điểm chung của AF và BD

=>ABFD là hình bình hành

Hình bình hành ABFD có AF\(\perp\)BD

nên ABFD là hình thoi

a: Xét ΔHAB vuông tại H và ΔHFD vuông tại H có

HB=HD

góc HAB=góc HFD

=>ΔHAB=ΔHFD

=>HA=HF

Xét tứ giác ABFD có

H là trung điểm chung của AF và BD

AF vuông góc BD

=>ABFD là hình thoi

b: Xét ΔCAF có

AE,CH là đường cao

AE cắt CH tại D

=>D là trực tâm

=>FD vuông góc AC tại K

góc EKD=góc HCF

góc HKD=góc HAD

mà góc HCF=góc HAD

nên góc EKD=góc HKD

=>KD là phân giác của góc HKE

18 tháng 5 2020

c, Theo phần b có , tgiac AHD đồng dạng tgiac CED

=? HD/ED = AD/CD

 Xét tgiac HDE và tgiac ADC, có:

 góc HDE = góc ADC ( 2 góc đối đỉnh)

HD/ED = AD/ CD (cmt)

=> tg HDE đồng dậng tg ADC ( c.g.c)

d, Áp dụng định lý Pytago vào tg ABC , có:

BC^2 = AB^2 + AC^2 = 6^2 + 8^2

=>BC = 10 (cm)

Có : BA^2 = BH. BC

=> BH = 3,6 = HD

=> BD = 2BH = 7,2(cm)

=> DC = BC - BD = 2,8 (cm)

Chứng minh tgiac AHB = tg AHD (c.g.c)

=> AD = AB = 6 (cm)

theo phần b, tg CDE đồng dạng th ADH

=> Dc/DA = DE/DH

=> DE = 1,68

Áp dụng đính lý pytagp vào tg CED

=> DC^2 = EC^2 + De^2

=> EC = 2,24

=> Diện tích tam giác CED = 1/2 . DE .EC = 1,8816 (cm^2)

Bài làm

Mik nghĩ bbạn thiếu đề là AH đường cao, còn đúng hay sai thì mình không chắc vì nếu AH không là đường cao sẽ không làm được bài, 

a) Xét tam giác ABC và tam giác HBA có:

\(\widehat{AHB}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác ABC ~ Tam giác HBA ( g - g )

b) Xét tam giác AHD và tam giác CED có:

\(\widehat{AHD}=\widehat{CED}=90^0\)

\(\widehat{HDA}=\widehat{EDC}\)( hai góc đối đỉnh )

=> Tam giác AHD ~ Tam giác CED ( g - g )

=> \(\frac{AH}{EC}=\frac{AD}{DC}\)

\(\Rightarrow AH.CD=AD.EC\)( đpcm )

c) Vì tam giác AHD ~ Tam giác CED ( cmt )

=> \(\frac{HD}{DE}=\frac{AD}{DC}\)

Xét tam giác HDE và tam giác ADC có:

\(\frac{HD}{DE}=\frac{AD}{DC}\)( cmt )

\(\widehat{HDE}=\widehat{ADC}\)( hai góc đối đỉnh )

=> Tam giác HDE ~ tam giác ADC ( g - c - g )

d) Xét tam giác ABC vuông ở A có:

Theo Pytago có:

BC2 = AB2 + AC2 

hay BC2 = 62 + 82 

=> BC2 = 36 + 64

=> BC2 = 100

=> BC = 10 ( cm )

Diện tích tam giác ABC là:

SABC = 1/2 . AB . AC

SABC = 1/2 . AH . BC

=> AB . AC = AH . BC

hay 6 . 8 = AH . 10

=> AH = 4,8 ( cm )

Xét tam giác AHC vuông ở H có:

Theo pytago có:

HC2 = AC2 - AH2 

hay HC2 = 82 - 4,82 

=> HC2 = 64 - 23,04

=> HC = 6,4 ( cm )

Ta có: BH + HD + DC = BC

=> HD + HD + DC = BC

=> 2HD + HC - HD = BC

Hay 2HD + 6,4 - HD = 10

=> HD + 6,4 =10

=> HD = 3,6 ( cm )

Ta có: HD + DC = HC 

hay 3,6 + DC = 6,4

=> DC = 2,8

Vì D đối xứng với B qua H

=> AH là trung trực của DB

=> AB = AD

=> Tam giác ABD cân tại A

=> AB = AD = 6 cm 

vì tam giác AHD ~ tam giác CED ( theo câu b )

=> \(\frac{HD}{DE}=\frac{AH}{EC}=\frac{AD}{DC}\)

hay \(\frac{3,6}{DE}=\frac{4,8}{EC}=\frac{6}{2,8}\)

=> EC = 4,8 . 2,8 : 6 = 2,24 ( cm )

=> DE = 3,6 . 2,24 : 4,8 = 1,68 ( cm )

Diện tích tam giác DEC là:

SDEC = 1/2 . EC . DE = 1/2 . 2,24 . 1,68 = 1,8816 ( cm2 )

e) CHo mình xin nghỉ. 

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;