Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\Leftrightarrow A=\left(\frac{x+1}{\left(x+1\right)\left(x-1\right)}+\frac{x}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)
\(\Leftrightarrow A=\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow A=\frac{x+1}{x-1}\)
b, dùng máy tính kq là-3
a)
\(\frac{x-2}{x+2}\) + \(\frac{3}{x-2}\) =\(\frac{X^2-11}{X^2-4}\)
=> MTC = ( X-2) * (X+2)
<=> \(\frac{\left(x-2\right)\cdot\left(x-2\right)}{\left(x+2\right)\cdot\left(x-2\right)}\) + \(\frac{3\cdot\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)\(\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
=> ( x - 2 ) ( x - 2 ) + 3 ( x + 2 ) = \(x^2\)- 11
<=>( \(x^2\)- 4x + 4 ) + 3x + 6 = \(x^2\)- 11
=> \(x^2\)- 4x + 4 + 3x + 6 = \(x^2\)- 11
=> \(x^2\)- 4x + 4 + 3x +6 - \(x^2\)- 11 = 0
=> -x + 10 = 0
=> -x = -10
=> x = 10
các câu tiếp tương tự :)
Bài làm
@Đặng Đặng: khi chuyển vế (-11 ) bạn không đổi dấu nên dẫn đến bị sai rồi.
a) \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\) ĐKXĐ: \(x\ne\pm2\)
\(\Rightarrow\left(x-2\right)\left(x-2\right)+3\left(x+2\right)=x^2-11\)
\(\Leftrightarrow x^2-4x+4+3x+6=x^2-11\)
\(\Leftrightarrow-x=-21\)
\(\Leftrightarrow x=21\) ( thỏa mãn điều kiện xác định )
Vậy x = 21 là nghiệm phương trình.
b) \(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\) ĐKXĐ: \(x\ne\pm1\)
\(\Rightarrow\left(x+1\right)+2\left(x-1\right)=x\)
\(\Leftrightarrow x+1+2x-2=x\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\) ( TMĐKXĐ )
Vậy x = 1/2 là nghiệm phương trình.
c) \(\frac{2}{x-1}+\frac{x^2+5}{\left(x+1\right)\left(x-2\right)}=\frac{1}{\left(x-2\right)}\)
\(\Leftrightarrow\frac{2\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}+\frac{\left(x^2+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}=\frac{1\left(x+1\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\left(2x+1\right)\left(x-2\right)+\left(x^2+5\right)\left(x-1\right)=1\left(x^2-1\right)\)
\(\Leftrightarrow2x^2-4x+x-2+x^3-x^2+5x-5=x^2-1\)
\(\Leftrightarrow x^3+2x-6=0\)
~ Đến đây tự lm tiếp ~
super easy . tập làm đi cho não có nếp nhăn Giang ơi :)
Mik làm bài 3 nha
Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì
\(x^2-6x+17\)đạt GTNN
Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ
Suy ra \(x^2-6x+17\ge17\)
Suy ra \(x^2-6x+17\)đạt GTNN khi
\(x^2-6x+17=17\)
\(\Leftrightarrow x^2-6x=0\)
Dấu ''='' xảy ra khi:
\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Câu cuôi tương tự
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)
Làm nốt
2/
\(T=8x^2-4x+\frac{1}{4x^2}+15\)
\(=\left(4x^2-4x+1\right)+\left(4x^2+\frac{1}{4x^2}-2\right)+16\)
\(=\left(2x-1\right)^2+\left(\frac{4x^2-1}{2x}\right)^2+16\ge16\)
X=1
tính máy tính là ra mà
\(\frac{1+x^2+\frac{1}{x+1}}{2+\frac{1}{x+1}}=1\) sau đó nhấn shift+solve sau đó nhấn bất kì số nào đấy tiếp là nhấn =