K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

1.

a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)

b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)

Theo de bai ta co;\(x_1-x_2=17\)

Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)

\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow16m^2+33=289\)

\(\Leftrightarrow m=4\)

22 tháng 8 2019

2.

a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)

TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)

TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)

Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)

Ta co:\(x^2_1+x^2_2=x_1+x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)

\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)

\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)

\(\Rightarrow7m^2-11m-6=0\)

\(\Delta_m=121+168=289>0\)

\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\) 

TH2;Tuong tu 

Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)

9 tháng 5 2019

a) phương trình (1) có a=m-1 b'=b/2 = -m-1 c=m

 \(\Delta=b'^2-ac=\left(-m-1\right)^2-\left(m-1\right)\cdot m\)
\(=m^2+2m+1-m^2+m=3m+1\)
Phương trình có hai nghiệm <=> \(\Delta\ge0\Leftrightarrow3m+1\ge0\Leftrightarrow m\ge-\frac{1}{3}\)

b) Khi phương trình có hai nghiệm x1, x2, theo hệ thức Vi-ét ta có

\(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{m-1}=2+\frac{4}{m-1}\\x_1\cdot x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-4x_1\cdot x_2=-2\)

9 tháng 5 2019

Sửa delta thành delta' nha, lúc nãy quên

a, \(x^2-mx+m-1=0\)

Thay m = 4 ta đc : 

\(x^2-4x+4-1=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

*Dạng 2: Các bài toán liên quan đến hệ pt, phương trình bậc hai một ẩn và áp dụng hệ thức Vi-et Bài 1 : Cho phương trình :x2 – mx + 2(m – 2 ) = 0 a/ Giải phương trình khi m = 1 b/ Chứng minh rằng phương trình luôn có nghiệm với mọi m c/ Tìm m để phương trình có hai nghiệm 2x1 + 3x 2  = 5  Bài 2: Cho phương trình   .  Giải phương trình khi m =2 Tìm các giá trị của m để phương trình có nghiệm. Gọi...
Đọc tiếp

*Dạng 2: Các bài toán liên quan đến hệ pt, phương trình bậc hai một ẩn và áp dụng hệ thức Vi-et

 

Bài 1 : Cho phương trình :x2 – mx + 2(m – 2 ) = 0

a/ Giải phương trình khi m = 1

b/ Chứng minh rằng phương trình luôn có nghiệm với mọi m

c/ Tìm m để phương trình có hai nghiệm 2x1 + 3x 2  = 5

 

Bài 2: Cho phương trình   .

  Giải phương trình khi m =2

  1. Tìm các giá trị của m để phương trình có nghiệm.

  2. Gọi là hai nghiệm của phương trình. Tìm giá trị của m để:

Bài 3: Cho phương trình:  

a) Chứng tỏ rằng phương trình có nghiệm   với mọi m.

b) Đặt A=.

b1) Chứng minh rằng:  A=    

b2) Tìm m sao cho A= 27.

  c) Tìm m sao cho phương trình có nghiệm này bằng ba  lần nghiệm kia

 

Bài 4:   Cho phương trình bậc hai  x2 – 2(m + 1) x + m – 4 = 0 (1)

a/ Giải phương trình (1) khi m = 1

b/ Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m

c/ Chứng minh rằng : Biểu thức A = x1 (1 – x2) + x2( 1 – x1 ) không phụ thuộc vào giá trị của m

 

1
29 tháng 4 2018

bài 1 a: 

x2-mx+2(m-2)=0(*)

thay m=1 vào phương trình trên ta được:

2x-1x+2(1-2)=0

<=>2x-1x=-2(1-2)

<=>x=-2+4

<=>x=2

vậy m=1 thì x=2

18 tháng 2 2020

a. thay m=1 vào pt(1): \(x^2-2.2x+2-4=0\)

<=>\(x^2-4x-2=0\)

\(\Delta'=\left(-2\right)^2-1.\left(-2\right)=4+2=6>0\)

=>\(x_1=-\left(-2\right)+\sqrt{6}=2+\sqrt{6};x_2=2-\sqrt{6}\)

Vậy,,,

b, \(\Delta'=\left[-\left(m+1\right)\right]^2-1.\left(2m-4\right)=m^2+2m+1-2m+4=m^2+5\)

Để pt(1) có 2 nghiệm phân biệt x1,x2 <=>\(\Delta'>0\Leftrightarrow m^2+5>0\) (luôn đúng)

Theo hệ thức vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-4\end{cases}}\)

Theo bài ra ta co;\(\frac{1}{x_1}+\frac{1}{x_2}=2\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=2\Leftrightarrow\frac{2m+2}{2m-4}=2\)

\(\Leftrightarrow2m+2=4m-8\Leftrightarrow2m=10\Leftrightarrow m=5\)

a, Với x=2

PT<=> 4+2(m-2)-m+1=0

<=> m=-1

Vậy m=-1 thì phương trình có 1 nghiệm x=2

Ý sau dùng hệ thức Vi-et là ra

25 tháng 9 2020

Câu 1: 

Đặt phương trình là (1)

ĐK: \(3x-16y-24\ge0\)

\(3x-16y-24=\sqrt{9x^2+16x+32}\Leftrightarrow\left(3x-16y-24\right)^2=9x^2+16x+32\)

\(\Leftrightarrow9\left(3x-16y-24\right)^2=9\left(9x^2+16x+32\right)\)\(\Leftrightarrow\left(9x-48y-72\right)^2=81x^2+144x+288\)

Với x, y nguyên thì (3y+5) là ước của (-7) và chia cho 3 dư 2

=> (3y+5)=-1 hoặc (3y+5)=-7

+ TH1: \(\left(3y+5\right)=-1\Leftrightarrow y=-2\Rightarrow x=-1\)

+ TH2: \(\left(3y+5\right)=-7\Leftrightarrow y=-4\Rightarrow x=-7\)

Vậy các cặp nghiệm nguyên của (x;y) là: (-1;-2); (-7;-4)

\(\Leftrightarrow\left(9x-48y-72\right)^2=\left(9x+8\right)^2+224\)

\(\Leftrightarrow\left(9x-48y-72\right)^2-\left(9x+8\right)^2=224\)

\(\Leftrightarrow\left(9x-48y-72+9x-8\right)\left(9x-48y-72-9x-8\right)=224\)

\(\Leftrightarrow\left(18x-48y-64\right)\left(-48y-80\right)=224\)

\(\Leftrightarrow-32\left(9x-24y-32\right)\left(3y+5\right)=224\)

\(\Leftrightarrow\left(9x-24y-32\right)\left(3y+5\right)=-7\)

25 tháng 9 2020

giả sử a là nghiệm chung của 2 phương trình

\(x^2+\text{ax}+bc=0\left(1\right)\) và \(x^2+bx+ca=0\left(2\right)\)

Ta có: \(\hept{\begin{cases}a^2+a\alpha+bc=0\\a^2+b\alpha+ca=0\end{cases}}\)

\(\Rightarrow\alpha\left(a-b\right)+c\left(b-a\right)=0\Rightarrow\left(a-c\right)\left(a-b\right)=0\Rightarrow\alpha=c\ne0\)

Thay \(\alpha=c\)vào (1) ta có: \(c^2+ac+bc=0\Rightarrow c\left(a+b+c\right)=0\Rightarrow a+b+c=0\)

Mặt khác, theo định lý Viet phương trình(1)  còn có nghiệm nữa là b, phương trình(2) còn có nghiệm nữa là a. Theo định lý Viet đảo, a và b là hai nghiệm của phương trình \(x^2-\left(a+b\right)x+ab=0\Leftrightarrow x^2+cx+ab=0\left(\text{đ}pcm\right)\)

24 tháng 4 2020

a) Thay m=1 vào phương trình ta được:

x2+2.1.x-6.1-9=0

<=> x2+2x-6-9=0

<=> x2+2x-15=0

<=> x2+5x-3x-15=0

<=> x(x+5)-3(x+5)=0

<=> (x-3)(x+5)=0

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

b) Thay x=2 vào phương trình ta được:

22+2.2.m-6m-9=0

<=> 4+4m-6m-9=0

<=> -2x-5=0

<=> -2x=5

<=> \(x=\frac{-5}{2}\)

7 tháng 5 2019

Cho phương trình x2 - 2(m - 1)x + m - 3 = 0. a) Chứng minh rằng phương trình luôn có nghiệm với mọi m. b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất của M = (x1)^2 + (x2)^2 - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

Tham khảo bài tương tự tại đó nhé bn !

Mk chưa hok lớp 9 nên ko biết , thông cảm 

7 tháng 5 2019

Có \(x^2-2\left(m-1\right)x-3=0\)

\(\Leftrightarrow x^2-2mx+2x-3=0\)

\(\Leftrightarrow x\left(x-2m+1\right)=3\)

\(\Rightarrow x,x-2m+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

x13-1-3
x-2m+131-3-1
m1/23/23/21/2
     

vậy pt luôn có 2 nghiệm phân biệt.