Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là \(\overline{abc}\)
Không gian mẫu: \(6.6.5=180\)
a. TH1: \(c=0\Rightarrow ab\) có \(A_6^2\) cách
TH2: \(c\ne0\Rightarrow c\) có 3 cách chọn, ab có \(5.5=25\) cách
Xác suất: \(P=\dfrac{3.25+A_6^2}{180}=\)
b. Tổng 3 chữ số chia hết cho 3 khi 3 số đồng dư khi chia 3 hoặc 3 số đôi một khác số dư khi chia 3.
- 3 số đồng dư khi chia cho 3: \(3!-2!=4\) số
- 3 số chia 3 có 3 số dư khác nhau:
+ Không có mặt số 0: \(C_2^1C_2^1C_2^1.3!=48\)
+ Có mặt số 0: \(C_2^1C_2^1C_2^1\left(3!-2!\right)=32\)
Xác suất: \(P=\dfrac{4+48+32}{180}=...\)
Chọn A
Số phần tử của A là A 9 4 = 3024 số.
Số phần tử của không gian mẫu là n ( Ω ) = 3024
Gọi A là biến cố: “Chọn được một số chia hết cho 11 và tổng bốn chữ số của nó chia hết cho 11”.
Xét số tự nhiên có 4 chữ số có dạng
Theo bài ra ta có: và
Suy ra
Trong các chữ số 1;2;3;4;5;6;7;8;9 có các bộ số mà tổng chia hết cho 11 là
Chọn 2 cặp trong 4 cặp số trên để tạo số
Chọn {a;c} có 4 cách, chọn {b;d} có 3 cách, sau đó sắp thứ tự các số a, b, c, d. Ta được 4.3.2.2 = 48
Suy ra n(A) = 48
Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)
Mặt khác \(a+b+c=d+e+f-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)
\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)
Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)
Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)
Chọn A
Vì là tập tất cả các số tự nhiên có 5 chữ số nên
Số phần tử của không gian mẫu là
Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.
có tận cùng bằng 1,do đó với có chữ số tận cùng là 3.
Xét các trường hợp sau:
1) M là số có 4 chữ số có dạng m n p q ¯ Khi đó:
- Với m = 1, do và q = 3 nên n ≥ 4
+) Khi n = 4 thì p > 2 nên p ∈ {4;5;6;7;8;9}. Ta được 6 số thỏa mãn.
+) Khi n ≥ 5: Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p ≠ m,n,q nên p có 7 cách chọn. Ta được 35 số thỏa mãn.
- Với m ≥ 2 tức là có 7 cách chọn m từ tập {2;4;5;6;7;8;9}. Khi đó với mọi n,p thuộc tập hợp {0;1;2;4;5;6;7;8;9} và n ≠ p ≠ m, do đó có 8 cách chọn n, có 7 cách chọn p. Ta được 7.8.7 = 392 số thỏa mãn
2) M là số có 5 chữ số có dạng m n p q r ¯ Khi đó: m n p q r ¯ ≤ 14285 và r = 3
Do m n p q r ¯ ≤ 14285 nên m chỉ nhận giá trị bằng 1 và n ≤ 4
- Với m=1; n = 0,2 thì p,q là các số tùy ý thuộc tập {0;2;4;5;6;7;8;9} và p ≠ q ≠ n Ta được 2.7.6 = 84 số thỏa mãn.
- Với m=1; n = 4:
+) Khi p = 0 thì q là số tùy ý thuộc tập {2;5;6;7;8;9}. Ta được 6 số thỏa mãn.
+) Khi p = 2 thì q phải thuộc tập {0;5;6;7;8}. Ta được 5 số thỏa mãn.
Vậy số phần tử của biến cố X là n(X) = 6 + 35 + 392 + 84 + 6 + 5 = 528
Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng
Chọn A
Gọi số có 9 chữ số có dạng
Từ 10 chữ số {0;1;2;3;4;5;6;7;8;9}, ta lập được số có 9 chữ số đôi một khác nhau.
Chọn ngẫu nhiên một số từ tập S
Gọi A là biến cố “Số được chọn chia hết cho 3”.
Đặt T =
Để (số có tổng các chữ số chia hết cho 3 sẽ chia hết cho 3)
Trường hợp 1: T = 45 => Số có 9 chữ số được lập từ các chữ số {1;2;3;4;5;6;7;8;9}
=> Lập được 9! số có 9 chữ số đôi một khác nhau và chia hết cho 3.
Trường hợp 2: T = 42 => Số có 9 chữ số được lập từ các chữ số {0;1;2;3;4;5;6;7;8;9}
+ a 1 có 8 cách chọn
+ Xếp 8 chữ số còn lại vào 8 vị trí có
Áp dụng quy tắc nhân, ta lập được số có 9 chữ số đôi một khác nhau và chia hết cho 3.
Trường hợp 3: T = 39 => Số có 9 chữ số được lập từ các chữ số {01;2;3;4;5;6;7;8;9}
Trường hợp 4:T = 36 => Số có 9 chữ số được lập từ các chữ số {0;1;2;3;4;5;6;7;8}
Trường hợp T = 39 và T = 36 tương tự như trường hợp T = 42
Vậy ta có tất cả 9! + 3.8.(8!) = 1330560 (số) thoả mãn yêu cầu bài toán
=> n(A) = 1330560
Có 900 số tự nhiên có 3 chữ số \( \Rightarrow n\left( \Omega \right) = 900\)
Gọi \({A_1}\) là biến cố: “Số được chọn chia hết cho 2”, \({A_2}\) là biến cố “Số được chọn chia hết cho 7”.
Vậy \({A_1}{A_2}\) là biến cố “Số được chọn chia hết cho 14”, \(A = {A_1} \cup {A_2}\) là biến cố “Số được chọn chia hết cho 2 hoặc 7”.
Có 450 số có 3 chữ số chia hết cho 2 \( \Rightarrow n\left( {{A_1}} \right) = 450 \Rightarrow P\left( {{A_1}} \right) = \frac{{n\left( {{A_1}} \right)}}{{n\left( \Xi \right)}} = \frac{{450}}{{900}} = \frac{1}{2}\)
Có 128 số có 3 chữ số chia hết cho 7 \( \Rightarrow n\left( {{A_2}} \right) = 128 \Rightarrow P\left( {{A_2}} \right) = \frac{{n\left( {{A_2}} \right)}}{{n\left( \Omega \right)}} = \frac{{128}}{{900}} = \frac{{32}}{{225}}\)
Có 64 số có 3 chữ số chia hết cho 14
\( \Rightarrow n\left( {{A_1}{A_2}} \right) = 64 \Rightarrow P\left( {{A_1}{A_2}} \right) = \frac{{n\left( {{A_1}{A_2}} \right)}}{{n\left( \Omega \right)}} = \frac{{64}}{{900}} = \frac{{16}}{{225}}\)
\( \Rightarrow P\left( A \right) = P\left( {{A_1} \cup {A_2}} \right) = P\left( {{A_1}} \right) + P\left( {{A_2}} \right) - P\left( {{A_1}{A_2}} \right) = \frac{1}{2} + \frac{{32}}{{225}} - \frac{{16}}{{225}} = \frac{{257}}{{450}}\)
Gọi \({B_1}\) là biến cố: “Số được chọn có 3 chữ số chẵn”, \({B_2}\) là biến cố “Số được chọn có 1 chữ số chẵn và 2 chữ số lẻ”.
Vậy \(B = {B_1} \cup {B_2}\) là biến cố “Số được chọn có tổng các chữ số là số chẵn”.
Có \(4.5.5 = 100\) số có 3 chữ số chẵn \( \Rightarrow n\left( {{B_1}} \right) = 100 \Rightarrow P\left( {{B_1}} \right) = \frac{{n\left( {{B_1}} \right)}}{{n\left( \Omega \right)}} = \frac{{100}}{{900}} = \frac{1}{9}\)
Có \(4.5.5 = 100\) số có 3 chữ số có chữ số hàng trăm chẵn, 2 chữ số còn lại lẻ.
Có \(5.5.5 = 125\) số có 3 chữ số có chữ số hàng chục chẵn, 2 chữ số còn lại lẻ.
Có \(5.5.5 = 125\) số có 3 chữ số có chữ số hàng đơn vị chẵn, 2 chữ số còn lại lẻ.
\( \Rightarrow n\left( {{B_2}} \right) = 100 + 125 + 125 = 350 \Rightarrow P\left( {{B_2}} \right) = \frac{{n\left( {{B_2}} \right)}}{{n\left( \Omega \right)}} = \frac{{350}}{{900}} = \frac{7}{{18}}\)
Vì \({B_1}\) và \({B_2}\) là hai biến cố xung khắc nên ta có:
\(P\left( B \right) = P\left( {{B_1} \cup {B_2}} \right) = P\left( {{B_1}} \right) + P\left( {{B_2}} \right) = \frac{1}{9} + \frac{7}{{18}} = \frac{1}{2}\)
Ta có: \(\left(3k+1\right)^3=3\left(9k^3+9k^2+3k\right)+1\)
\(\left(3k+2\right)^3=3\left(9k^3+18k^2+12k+2\right)+2\)
Từ đó ta thấy \(x^3\) và \(x\) luôn có cùng số dư khi chia 3 (với mọi x là số tự nhiên)
\(\Rightarrow\) Số cách chọn để \(a^3+b^3+c^3\) chia hết cho 3 cũng giống số cách chọn để \(a+b+c\) chia hết cho 3
Chia tập S làm 3 tập: \(A=\left\{3;6;...;33\right\}\) gồm 11 phần tử chia hết cho 3
\(B=\left\{1;4;...;34\right\}\) gồm 12 phần tử chia 3 dư 1
\(C=\left\{2;5;...;35\right\}\) gồm 12 phần tử chia 3 dư 2
Bộ (a;b;c) được chọn thỏa mãn khi: (cả 3 số đều thuộc cùng 1 tập), (3 số thuộc 3 tập khác nhau)
Số cách chọn thỏa mãn:
\(C_{11}^3+C_{12}^3+C_{12}^3+C_{11}^1C_{12}^1C_{12}^1=...\)