Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu ở trên
không ai giúp được thì bạn hãy lên hoc24.vn nhé Khuất Tuấn Anh
số chia hết cho 3 có dạng 3k
số chi hết cho 3 dư 1 là 3k+1
số chia hết cho 3 dư 2 là 3k+2
Bài 1:
a) ta có: 12-n chia hết cho 8-n
=> 4+8-n chia hết cho 8-n
mà 8-n chia hết cho 8-n
=> 4 chia hết cho 8-n
=> 8-n thuộc Ư(4)= (1;-1;2;-2;4;-4)
nếu 8-n = 1 => n = 7 (TM)
8-n = -1 => n = 9 (TM)
8-n = 2 => n = 6 (TM)
8-n = -2 =>n = 10 (TM)
8-n = 4 => n =4 (TM)
8-n = -4 => n = 12 (TM)
KL: n = ( 7;9;6;10;4;12)
b) ta có: n2 + 6 chia hết cho n2+1
=> n2 + 1 + 5 chia hết cho n2+1
mà n2+1 chia hết cho n2+1
=> 5 chia hết cho n2+1
=> n2+1 thuộc Ư(5)=(1;-1;5;-5)
nếu n2+1 = 1 => n2=0 => n = 0 (Loại)
n2+1 = -1 => n2 = -2 => không tìm được n ( vì lũy thừa bậc chẵn có giá trị nguyên dương)
n2+1 = 5 => n2 = 4 => n=2 hoặc n= -2
n2+1 = -5 => n2 = -6 => không tìm được n
KL: n = (2;-2)
Bài 2:
Gọi số tự nhiên cần tìm là: a
ta có: a chia 4 dư 1 => a-1 chia hết cho 4 ( a chia hết cho 7)
a chia 5 dư 1 => a-1 chia hết cho 5
a chia 6 dư 1 => a-1 chia hết cho 6
=> a-1 chia hết cho 4;5;6 => a-1 thuộc BC(4;5;6)
BCNN(4;5;6) = 60
BC(4;5;6) = (60;120;180; 240;300;360;...)
mà a < 400
=> a-1 thuộc ( 60;120;180;240;300;360)
nếu a-1 = 60 => a=61 (Loại, vì không chia hết cho 7)
a-1 = 120 => a = 121 (loại)
a-1 = 180 => a = 181 (Loại)
a-1 = 240 => a = 241 (Loại)
a-1 = 300 => a = 301 ( TM)
a-1 = 360 => a = 361 (Loại)
KL: số cần tìm là: 301
n2 + n + 2 = n(n + 1) + 2
n(n + 1) là tích của 2 số tự nhiên liên tiếp nên có chữ số tận cùng là 0; 2; 6
nên n(n + 1) + 2 sẽ có chữ số tận cùng là 2; 4; 8
mà chỉ có các số có tận cùng là 0; 5 mới chia hết cho 5 => n(n +1) + 2 \(⋮̸\)5
Vậy n2 + n + 2 \(⋮̸\) 5 (n \(\in\)N)
\(⋮̸\) là ko chia hết nhé!
\(n^2+n+2=n\left(n+1\right)+2\). Mà \(n\left(n+1\right)\)là tích hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0,2,6 nên khi cộng 2 có chữ số tận cùng là 2,4,8 nên không chia hết cho 5
vì số ko chia hết cho 3 có dạng 3k+1 và 3k+2
TH1:Với n =3k+1 ta có:(3k+1)2 =9k2 + 1
Vì 9 chia hết cho 3 => 9k2 chia hết cho 3
mà 1 chia 3 dư 1=>n2 chia 3 dư 1(đpcm)
TH2: Với n=3k+2 ta có :(3k+2)2 =9k2 +4
Vì 9 chia hết cho 3 => 9k2 chia hết cho 3
mà 4 chia 3 dư 1=> n^2 chia 3 dư 1(đpcm)
a ko chia hết cho 3 nên a có dạng 3k+1hoặc 3k+2
nếu có dang 3k+1 thì a^2 =6k^2+1(chia cho 3 dư 1)
nếu a có dạng 3k+2 thì a^2 =6k^2+4 chia 3 dư 1(do 6k^2:3mà4 chia 3 dư 1 )