K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

vì số ko chia hết cho 3 có dạng 3k+1 và 3k+2

TH1:Với n =3k+1 ta có:(3k+1)=9k+ 1

        Vì 9 chia hết cho 3 => 9kchia hết cho 3

            mà 1 chia 3 dư 1=>nchia 3 dư 1(đpcm)

TH2: Với n=3k+2 ta có :(3k+2)=9k+4

        Vì 9 chia hết cho 3 => 9kchia hết cho 3

            mà 4 chia 3 dư 1=> n^2 chia 3 dư 1(đpcm)

11 tháng 11 2017

a ko chia hết cho 3 nên a có dạng 3k+1hoặc 3k+2

nếu có dang 3k+1 thì a^2 =6k^2+1(chia cho 3 dư 1)

nếu a có dạng 3k+2 thì a^2 =6k^2+4 chia 3 dư 1(do 6k^2:3mà4 chia 3 dư 1 )

2 tháng 3 2017

ko bt ban oi

5 tháng 8 2018

Vi a,b lần lượt là bội của 3 nhưng có cùng số dư

Do đó a,b đều có dạng là 3k+1;3k+2

Xét ab-1 tại a,b có dạng 3k+1:

Ta có: \(\left(3k+1\right)^2-1=9k^2+6k=3\left(3k^2+2k\right)⋮3\)

Tương tự: tại a,b có dạng 3k+2

Ta có: \(\left(3k+2\right)^2-1=9k^2+12k+3=3\left(3k^2+4k+1\right)⋮3\)

Vậy ab-1 chia hết cho 3

13 tháng 7 2016

Bài 1 có nhầm đề không vậy 

10 là ước của của 3^n+4 +1=>3^n+4  + 1 chia hết cho 10 rồi

2 tháng 12 2017

 n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

tk nha

2 tháng 12 2017

Theo đề bài ta có:

\(n⋮3\)

\(\Rightarrow\orbr{\begin{cases}n:3dư1\\n:3dư2\end{cases}}\)

TH1:\(n:3dư1\)

\(\Rightarrow n=3k+1\left(k\in Z\right)\)

\(\Rightarrow n^2=\left(3k+1\right)^2=9k^2+6k+1:3\text{dư}1\left(1\right)\)

TH2:\(n:3dư2\)

\(\Rightarrow n=3k+2\left(k\in Z\right)\)

\(\Rightarrow n^2=\left(3k+2\right)^2=9k^2+12k+4:3\text{dư}1\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow n:3\text{dư}1\left(ĐPCM\right)\)

CHÚC BẠN HỌC TỐT!!! :)