K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

Đáp án C) nha

Ta có \(P=\frac{x^2-xy}{5y^2-5xy}=-\frac{xy-x^2}{5y^2-5xy}=-\frac{x\left(y-x\right)}{5y\left(y-x\right)}=-\frac{x}{5y}\)

13 tháng 8 2019

Chọn kết quả đúng

a) Biểu thức P = x2−xy5y2−5xy bằng:

A) x25y2+5

B) −15

C) x5y

D)

7 tháng 11 2018

Bài 1:

a) \(\dfrac{16-\left(x+3\right)^2}{x^2-2x+1}\)

\(=\dfrac{\left(4-x-3\right)\left(4+x+3\right)}{\left(x-1\right)^2}\)

\(=\dfrac{\left(1-x\right)\left(x+7\right)}{\left(1-x\right)^2}\)

\(=\dfrac{x+7}{1-x}\)

b) \(\dfrac{x^2+4x+4}{x^2+5x+6}\)

\(=\dfrac{\left(x+2\right)^2}{x^2+2x+3x+6}\)

\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)+3\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{x+2}{x+3}\)

Bài 2:

a) \(\dfrac{3xy+6}{6xy+12}\)

\(=\dfrac{3\left(xy+2\right)}{6\left(xy+2\right)}\)

\(=\dfrac{3}{6}\)

\(=\dfrac{1}{2}\left(Đpcm\right)\)

b) \(\dfrac{x^2-xy}{5y^2-5xy}\)

\(=\dfrac{x\left(x-y\right)}{5y\left(y-x\right)}\)

\(=\dfrac{-x\left(y-x\right)}{5y\left(y-x\right)}\)

\(=-\dfrac{x}{5y}\)

Chỗ này hình như ghi sai đề

7 tháng 11 2018

a)\(\frac{3xy+6}{6xy+12}=\frac{1}{2}\Leftrightarrow\left(3xy+6\right)\cdot2=\left(6xy+12\right)\cdot1\)

                                    \(\Leftrightarrow6xy+12=6xy+12\)

Vậy.......

b)\(\frac{x^2-xy}{5y^2-5xy}=\frac{x}{5y}\Leftrightarrow\left(x^2-xy\right)\cdot5y=\left(5y^2-5xy\right)\cdot x\)

                                          \(\Leftrightarrow5x^2y-5xy^2=5xy^2-5x^2y\)

Vậy.....

23 tháng 12 2019

Ta có :

\(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)

\(\frac{x^2-xy}{5xy-5y^2}=\frac{x\left(x-y\right)}{5y\left(x-y\right)}=\frac{x}{5y}\)

Hok tốt !

15 tháng 3 2020

1, \(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)\(=\frac{4y.y}{11x^2.x^2}.\frac{-3x^2}{2.4y}\)\(=\frac{y}{11x^2}.\frac{-3}{2}=\frac{-3y}{22x^2}\)

2, \(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)\(=\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}\)\(=\frac{2x.2x}{5y.y}.\frac{5y}{3.2x}.\frac{3y}{2x}\)\(=\frac{2x}{y}.\frac{1}{3}.\frac{3y}{2x}\)

\(\frac{2x}{3y}.\frac{3y}{2x}=1\)

3, \(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)\(=\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}\)\(=\frac{\left(x+2\right)}{3}.\frac{1}{2}=\frac{x+2}{6}\)

4, \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\left(-\frac{2\left(x-2\right)}{x+2}\right)=\frac{5}{4}.\frac{-2}{1}=-\frac{5}{2}\)

5, \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{3}{-\left(x-6\right)}=\frac{x+6}{2\left(x+5\right)}.\frac{-3}{1}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)

6, \(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}=\frac{\left(x-3y\right)\left(x+3y\right)}{\left(xy\right)^2}.\frac{3xy}{2\left(x-3y\right)}=\frac{x+3y}{xy}.\frac{3}{2}=\frac{3\left(x+3y\right)}{2xy}\)

7, \(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}=\frac{3\left(x-y\right)\left(x+y\right)}{5xy}.\frac{5xy.3x}{-2\left(x-y\right)}=\frac{3\left(x+y\right)}{1}.\frac{3x}{-2}=\frac{-9x\left(x+y\right)}{2}\)

15 tháng 3 2020

Làm rõ lâu.

17 tháng 7 2017

giải giùm tui đi 

27 tháng 7 2017

a) \(\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}=\frac{4x^2.5y.3y}{5y^2.6x.2x}=1\)

b)\(\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}=\frac{x+2}{6}\)

c) \(\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)

25 tháng 7 2021

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm 

5 tháng 8 2019

\(\frac{x^5y}{xy^4}=\frac{x^4}{y^3}\)

\(\frac{3\times x^2\times y^5}{9\times x\times y^4}=\frac{xy}{3}\)