K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?A. Δ ABC ∼ Δ DEFB. ABCˆ = EFDˆC. ACBˆ = ADFˆD. ACBˆ = DEFˆBài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:A. Δ RSK ∼ Δ PQMB. Δ RSK ∼ Δ MPQC. Δ RSK ∼ Δ QPMD. Δ RSK ∼ Δ QMPBài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thìA. RSKˆ = PQMˆB. RSKˆ = PMQˆC. RSKˆ = MPQˆD. RSKˆ = QPMˆBài 4: Chọn câu trả lời...
Đọc tiếp

Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?

A. Δ ABC ∼ Δ DEF

B. ABCˆ = EFDˆ

C. ACBˆ = ADFˆ

D. ACBˆ = DEFˆ

Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:

A. Δ RSK ∼ Δ PQM

B. Δ RSK ∼ Δ MPQ

C. Δ RSK ∼ Δ QPM

D. Δ RSK ∼ Δ QMP

Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì

A. RSKˆ = PQMˆ

B. RSKˆ = PMQˆ

C. RSKˆ = MPQˆ

D. RSKˆ = QPMˆ

Bài 4: Chọn câu trả lời đúng?

A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF

C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF

D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?

A. 17,5         B. 18

C. 18,5       D. 19

II. Bài tập tự luận

Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:

a) Δ BAD ∼ Δ DBC

b) ABCD là hình thang

 
0
7 tháng 11 2018

Ta có: Δ ABC ∼ Δ DEF

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án B.

14 tháng 2 2017

Ta có: Δ ABC đồng dạng Δ DEF

Bài tập: Khái niệm hai tam giác đồng dạng | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án B.

27 tháng 3 2019

Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A ta được

 

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Tính EFDM là tính cái gì vậy bạn?

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

c: ΔABH vuông tại H

mà HE là đường cao

nên AE*AB=AH^2

ΔACH vuông tại H có HF là đường cao

nên AF*AC=AH^2=AE*AB

a: Xét ΔABC có

D,F lần lượt là trung điểm của AB,AC
nên DF là đường trug bình

=>DF//BC và FD=1/2BC

=>DF//EC và FD=EC

=>DFCE là hình bình hành

b: Để DFCE là hình chữ nhật thì góc C=90 độ

 

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn