Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
Ta có
(A):
16 x 4 ( x – y ) – x + y = 16 x 4 ( x – y ) – ( x – y ) = ( 16 x 4 – 1 ) ( x – y ) = [ ( 2 x ) 4 – 1 ] ( x – y ) = [ ( 2 x ) 2 – 1 ] [ ( 2 x ) 2 + 1 ] ( x – y ) = ( 2 x – 1 ) ( 2 x + 1 ) ( 4 x 2 + 1 ) ( x – y )
Nên (A) sai
Và (B):
2 x 3 y – 2 x y 3 – 4 x y 2 – 2 x y = 2 x y ( x 2 – y 2 – 2 y – 1 ) = 2 x y [ x 2 – ( y 2 + 2 y + 1 ) ] = 2 x y [ x 2 – ( y + 1 ) 2 ] = 2 x y ( x – y – 1 ) ( x + y + 1 ) .
Nên (B) sai.
Vậy cả (A) và (B) đều sai.
Đáp án cần chọn là: C
\(\left(x+y\right)\left(x+y\right)=x^2+xy+xy+y^2=x^2+2xy+y^2\)
\(\left(x-y\right)\left(x-y\right)=x^2-xy-xy+y^2=x^2-2xy+y^2\)
\(\left(x-z\right)\left(x+z\right)=x^2+xz-xz-z^2=x^2-z^2\)
a) (x+y+x_y).(x+y_x+y)
b ) (( x + y )+(x _ y))2
d ) 8x3 + y3 _ 8x3 + y3 =2y3
a: \(\dfrac{xy}{x^2+y^2}=\dfrac{5}{8}\)
=>\(\dfrac{xy}{5}=\dfrac{x^2+y^2}{8}=k\)
=>\(xy=5k;x^2+y^2=8k\)
\(A=\dfrac{8k-2\cdot5k}{8k+2\cdot5k}=\dfrac{-2}{18}=\dfrac{-1}{9}\)
b: Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\)
=>x=a*k; y=b*k; z=c*k
\(B=\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)
\(=\dfrac{k^2\cdot\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
giúp tui với mấy bạn ơi
A