Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left|x+y\right|\ge0\)
\(\left|x\right|+\left|y\right|\ge0\)\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|\)
a) vì x,y \(\in\)Z \(\Rightarrow\)x + y \(\in\)Z
\(\Rightarrow\)[ x + y ] = x + y ( 1 )
[ x ] = x ; [ y ] = y
\(\Rightarrow\)[ x ] + [ y ] = x + y ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)[ x + y ] = [ x ] + [ y ]
b) Ta có : y = [ y ] + { y } trong đó [ y ] \(\in\)Z ; 0 \(\le\){ y } < 1
\(\Rightarrow\)[ x + y ] = [ x + [ y ] + { y } ] ( 1 )
x \(\in\)Z ; [ y ] \(\in\)Z ; x + [ y ] \(\in\)Z
Từ ( 1 ) \(\Rightarrow\)[ x + y ] = [ x + [ y ] ] = x + [ y ]
x<y suy ra a/m<b/m suy ra a<b (vì m<0)
mà a<b suy ra a+b < b+b
suy ra a+b<2b
suy ra a+b/2 <b
suy ra a+b/2m <b/m
suy ra a+b/2m< y
Suy ra z<y (1)
Mặt khác a<b suy ra a+a <a+b
suy ra 2a <a+b
suy ra 2a/m <a+b/ m
suy ra a/m < a+b/2m
suy ra x<z (2)
Từ (1) và (2)
suy ra x<z<y
Vì x < y (a/m < b/m) và m > 0 nên a < b .
x = a / m = 2a / 2m ; y = b / m = 2b / 2m ; z = a + b / 2m
a < b => a + a < a + b < b + b <=> 2a < a + b < 2b => 2a / 2m < a + b / 2m < 2b / 2m => x < z < y
ta có x=a/m = 2a/2m ; y= b/m= 2b/2m ; z= (a+b)/2m
lại có x<y <=> a<b (do m>0)
<=> a+a < a+b < b + b
<=> 2a < a+b < 2b
<=> 2a/2m <(a+b)/2m <2b/2m
<=> x<z<y
x =a/m =>. x = 2a/2m
y =b/m => y = 2b/2m
z = (a+b)/2m
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1)
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2)
Suy ra:
2a < a +b < 2b
Suy ra (chia 2 vế cho 2m) :
2a/2m < (a +b)/2m < 2b
R út gọn ta được : x < z <y
A
A