Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta nhân cả 2 vế với \(x+\sqrt{x^2+2008}\)
hay \(y+\sqrt{y^2+2008}\)
Ta có:
\(a^{2006}+a^{2008}+b^{2006}+b^{2008}\ge2\left(a^{2007}+b^{2007}\right)\)
Dấu = xảy ra khi \(a=b=1\)
\(\Rightarrow S=a^{2009}+b^{2009}=2\)
Ta có :
\(a+b+c=2009\)
\(\Rightarrow\frac{1}{a+b+c}=\frac{1}{2009}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{\left(a+b+c\right)-c}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{c^2+ab+bc+ca}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}a+b=0\\b+c=0\\c+a=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=2009\\b=2009\\c=2009\end{array}\right.\)
(+) a = 2009
=> P = 0
(+) b = 2009
=> P = 0
(+) c = 2009
=> P = 0
Vậy P = 0
a+ b + c=2009 mà. Sao kết quả a=2009: b=2009 và c cùng = 2009
\(bdt\Leftrightarrow a^2+b^2+c^2-ab-ac-bc-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)
Đặt \(a-b=x;b-c=y;c-a=z\) nên
\(bdt\Leftrightarrow\frac{1}{2}\left(x^2+y^2+z^2\right)-\frac{x^2}{26}-\frac{y^2}{6}-\frac{z^2}{2009}\ge0\)
\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{26}\right)+\left(\frac{y^2}{2}-\frac{y^2}{6}\right)+\left(\frac{z^2}{2}-\frac{z^2}{2009}\right)\ge0\)
\(\Leftrightarrow\frac{6x^2}{13}+\frac{y^2}{3}+\frac{2007z^2}{4018}\ge0\)(luôn đúng \(\forall x;y;z\))
Vậy BTĐ đã được chứng minh
Với mọi a số nguyên lẻ thì a2 chia 4 dư 1. Thật vậy
Đặt a= 2k +1 a2 = (2k+1)2 = 4k2+4k+1( kZ) a 1(mod 4)
Vì a1, a2,…a2008 là các số nguyên lẻ nên
VT = a12+a22 +…+a20082 1+1+…1( có 2008 số1) 2008 0(mod4) (1)
Mà a20092 1(mod 4)(2)
Từ (1) và (2) VT ≠ VP vậy không có số nguyên lẻ a1;a2; …;a2009 nào thoả mãn đề bài
Do \(\left\{{}\begin{matrix}a^{2008}\ge0\\b^{2008}\ge0\\c^{2008}\ge0\\a^{2008}+b^{2008}+c^{2008}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^{2008}\le1\\b^{2008}\le1\\c^{2008}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{matrix}\right.\)
\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le a^{2008}+b^{2008}+c^{2008}\)
\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le1\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Khi đó \(a^{2007}+b^{2008}+c^{2009}+2020=1+2020=2021\)