Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\frac{9-x}{7}+\frac{11-x}{9}=2\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-2=0\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-1-1=0\)
\(=>\left(\frac{9-x}{7}-1\right)+\left(\frac{11-x}{9}-1\right)=0\)
\(=>\frac{2-x}{7}+\frac{2-x}{9}=0=>\left(2-x\right).\left(\frac{1}{7}+\frac{1}{9}\right)=0\)
Vì \(\frac{1}{7}+\frac{1}{9}\) khác 0=>2-x=0=>x=2
Theo T/c dãy tỉ số=nhau:
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}\)\(=\frac{\left(x+y+z\right)+\left(16-25+9\right)}{9+16+25}=\frac{x+y+z}{50}\)
Thay x=2 vào \(\frac{x+16}{9}=>\frac{2+16}{9}=\frac{x+y+z}{50}=>\frac{x+y+z}{50}=2=>x+y+z=100\)
Vậy x+y+z=100
\(1.\)Ta có: \(8.10^{2016}+2017=8.10...000+2017=80...000+2017=80...2017\)
Mà tổng các chữ số của số trên là: \(8+0+...+2+0+1+7=18\)chia hết cho 9
\(\Rightarrow\)\(8.10^{2016}+2017\)chia hết cho 9
Vậy \(\frac{8.10^{2016}+2017}{9}\)có giá trị là 1 số tự nhiên.
\(2.\)Ta có: 220 đồng dư với 0 (mod 2) nên \(220^{11969}\)đồng dư với 0 (mod 2)
119 đồng dư với 1 (mod 2) nên \(119^{69220}\)đồng dư với 1 (mod 2)
69 đồng dư với -1 (mod 2) nên \(69^{220119}\)đồng dư với -1 (mod 2)
Vậy A đồng dư với 0 (mod 2) suy ra A chia hết cho 2.
Mặt khác: 220 đồng dư với 1 (mod 3) nên \(220^{11969}\)đồng dư với 1 (mod 3)
119 đồng dư với -1 (mod 3) nên \(119^{69220}\)đồng dư với -1 (mod 3)
69 đồng dư với 0 (mod 3) nên \(69^{220119}\)đồng dư với 0 (mod 3)
Vậy A đồng dư với 0 (mod 3) suy ra A chia hết cho 3.
Ta lại có: 220 đồng dư với -1 (mod 17) nên \(220^{11969}\)đồng dư với -1 (mod 17)
119 đồng dư với 0 (mod 17) nên \(119^{69220}\)đồng dư với 0 (mod 17)
69 đồng dư với 1 (mod 17) nên \(69^{220119}\)đồng dư với 1 (mod 17)
Vậy A đồng dư với 0 (mod 17) suy ra A chia hết cho 17.
Vì 2, 3, 17 là các số nguyên tố \(\Rightarrow\)A chia hết cho 102 (vì 2.3.17 = 102).
102 = 2.3.17
+) Chứng minh A chia hết cho 2
\(220^{119^{69}}=\left(....0\right)\)
\(69^{220}\) lẻ => \(119^{69^{220}}=\left(....9\right)\)
220119 tận cùng là 0 => kết qỉa là số chẵn => \(69^{220^{119}}=\left(....1\right)\)
=> A có tận cùng là chữ số 0 => A chia hết cho 2 (1)
+) A chia hết cho 3
220 đồng dư với 1 (mod 3) => \(220^{119^{69}}\) đồng dư với 1 mod 3
119 đồng dư với -1 mod 3 => \(119^{69^{220}}\) đồng dư với \(\left(-1\right)^{69^{220}}=-1\) (mod 3)
69 chia hết cho 3 nên \(69^{220^{119}}\) chia hết cho 3 hay \(69^{220^{119}}\) đồng dư với 0 (mod 3)
=> A đồng dư với 1 +(-1) + 0 = 0 (mod 3) =>A chia hết cho 3 (2)
+) A chia hết cho 17
220 đồng dư với (-1) mod 3 => \(220^{119^{69}}\) đồng dư với \(\left(-1\right)^{119^{69}}=-1\) ( mod 3)
119 chia hết cho 17 nên \(119^{69^{220}}\) chia hết cho 17
69 đồng dư với 1 mod 17 => \(69^{220^{119}}\) đồng dư với 1 mod 17
=> A đồng dư với (-1) + 0 + 1 = 0 mod 17
=> A chia hết cho 17 (3)
Từ (1)(2)(3) => A chia hết cho 2.3.17 = 102
\(220\equiv0\left(mod2\right)\) nên \(220^{119^{69}}\equiv0\left(mod2\right)\)
\(119\equiv1\left(mod2\right)\) nên \(119^{69^{220}}\equiv1\left(mod2\right)\)
\(69\equiv-1\left(mod2\right)\)nên \(69^{220^{119}}\equiv-1\left(mod2\right)\)
Vậy \(A\equiv0\left(mod2\right)\)hay A chia hết cho 2
Tương tự: A chia hết cho 3; A chia hết cho 17
Vì 2,3,17 là các snt => A chia hết cho 102