Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c.\)
\(\Rightarrow M=\frac{a^{2013}b^2c}{c^{2016}}=\frac{c^{2013+2}}{c^{2016}}=\frac{c^{2016}}{c^{2016}}=1\)
a/b=b/c=c/a
Áp dụng t/c dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b =b/c=c/a=1 suy ra a=b=c
suy ra M =1
a)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\left(1-\frac{b}{a}\right)=\left(1-\frac{d}{c}\right)\)
\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
b)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được;
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)
c)
\(\frac{b}{a}=\frac{d}{c}\Leftrightarrow3+\frac{b}{a}=3+\frac{d}{c}\Leftrightarrow\frac{3a+b}{a}=\frac{3c+d}{c}\Leftrightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
a) Áp dụng dãy tỉ số bằng nhau.
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
=> a=b=c
b) \(S=\frac{a^5.b^7.c^{2013}}{a.b^8.c^{2016}}=\frac{a^4}{b.c^3}=\frac{a^4}{a.a^3}=\frac{a^4}{a^4}=1\)
Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d\(\ne\)0)
=> \(\frac{a}{b}=1\)=> a = b
\(\frac{b}{c}=1\) => b = c
\(\frac{c}{d}=1\) => c = d
\(\frac{d}{a}=1\) => d = a
=> a = b = c = d
Khi đó, ta có: \(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
hay \(\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\)
= \(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
= \(\frac{1}{2}.4=2\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow2c=\frac{a+b}{ab}\)
\(\Rightarrow2ab=\left(a+b\right)c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-bc\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
với a,b,c khác 0 và b khác c
đpcm.
áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\Rightarrow a=b\\\frac{b}{c}=1\Rightarrow b=c\\\frac{c}{a}=1\Rightarrow c=a\end{cases}}\Rightarrow a=b=c\)
\(\Rightarrow\frac{a^3.b^2.c^{2011}}{b^{2016}}=\frac{a^{2016}}{a^{2016}}=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Từ đó suy ra : a = b = c
\(\Rightarrow\frac{a^{72}.b^{73}.c^{74}}{b^{219}}=\frac{b^{219}}{b^{219}}=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a=a+b+c/a+b+c = 1
=> a=b;b=c;c=a => a=b=c
Khi đó : a^72.b^73.c^74/b^219 = b^72.b^73.b^74/b^219 = b^219/b^219 = 1
k mk nha
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c.\)
Từ đó suy ra : a = b = c
\(\Rightarrow\frac{a^{72}.b^{73}.c^{74}}{b^{219}}=\frac{b^{219}}{b^{219}}=1\)