Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\) \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\) \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\) a = -b hoặc b = -c hoặc c = -a
1) Nếu a = -b thì \(a^{2n+1}+b^{2n+1}=-b^{2n+1}+b^{2n+1}=0\)và \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=\frac{1}{-b^{2n+1}}+\frac{1}{b^{2n+1}}=0\)
\(\Rightarrow\) \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)
Tương tự cho 2 trường hợp còn lại suy ra đpcm.
a)(a+b+c)(ab+bc+ac)-abc=a(ab+bc+ac)+b(ab+bc+ac)+c(ab+bc+ac)-abc
=a2b+abc+a2c+ab2+b2c+abc+abc+bc2+ac2-abc
=(abc+a2b)+(a2c+ac2)+(b2c+ab2)+(bc2+abc)+(abc-abc)
=ab(c+a)+ac(c+a)+b2(c+a)+bc(c+a)
=(ab+ac+b2+bc)(c+a)
=(a+b)(b+c)(c+a)
a) \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+c^2b+c^2a-abc\)
\(=a^2b+ab^2+b^2c+bc^2+c^2a+a^2c+2abc=b\left(a^2+2ac+c^2\right)+b^2\left(a+c\right)+ac\left(a+c\right)\)
\(=b\left(a+c\right)^2+b^2\left(a+c\right)+ac\left(a+c\right)=\left(a+c\right)\left(ab+bc+b^2+ac\right)\)
\(=\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=\left(a+c\right)\left(a+b\right)\left(b+c\right)\)
b) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(áp dụng từ câu a) )
\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Đặt \(a^{2n+1}=x;b^{2n+1}=y;c^{2n+1}=z\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)( áp dụng câu a) )
\(\Rightarrow x+y=0\)hoặc \(y+z=0\)hoặc \(z+x=0\)
- Với \(x+y=0\Leftrightarrow a^{2n+1}+b^{2n+1}=0\Leftrightarrow\left(a+b\right).A=0\)với A là một đa thức
Mà ta lại có \(a+b=0\left(cmt\right)\)\(\Rightarrow\)\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=0\)\(\Rightarrow\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}\)(luôn đúng)
Tương tự với các trường hợp còn lại, ta có điều phải chứng minh.
\(\)
ĐK: a,b,c khác 0 và a+b+c khác 0
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\Rightarrow\left(a+b\right)\left(\frac{c^2+ca+ab+bc}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> hoặc a=-b hoặc b=-c hoặc c=-a.
Khi đó đẳng thức:
\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)đúng với mọi lũy thừa lẻ 2n+1. ĐPCM.
A >1 là chắc chắn rồi cần gì phải CM nữa cho khổ
\(M=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-a\right)}\)
Đánh giá đại diện: \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)
Tương tự: \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)
\(\Rightarrow M=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2N\left(đpcm\right)\)
\(\frac{1}{1.\left(2n-1\right)}+\frac{1}{3.\left(2n-3\right)}+...+\frac{1}{\left(2n-3\right).3}+\frac{1}{\left(2n-1\right).1}\)
\(=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{3+2n-3}{\left(2n-3\right).3}+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)
\(=\frac{1}{2n}\left(1+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-3}+\frac{1}{3}+\frac{1}{2n-1}+1\right)\)
\(=\frac{1}{n}\left(1+\frac{1}{3}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{1}{n}\).
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!