K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

Ta có :\(x=2014\Rightarrow2015=x+1\)

\(\Rightarrow f\left(2014\right)=x^{17}-\left(x+1\right)x^{2016}+\left(x+1\right)x^{2015}-.....+\left(x+1\right)x-1\)

\(=x^{17}-x^{17}-x^{2016}+x^{2016}+x^{2015}-....+x^2+x-1\)

\(=x-1=2014-1=2013\)

3 tháng 5 2018

Cảm ơn bạn nhiều !

21 tháng 2 2020

Ta có : \(2015=2014+1=x+1\)

- Thay x + 1 = 2015 vào biểu thức f(2014) ta được :

\(f_{\left(2014\right)}=2014^{17}-\left(2014+1\right).2014^{16}+...+\left(2014+1\right).2014-1\)

=> \(f_{\left(2014\right)}=2014^{17}-2014^{17}-2014^{16}+...+2014^2+2014-1\)

=> \(f_{\left(2014\right)}=2014-1=2013\)

20 tháng 4 2019

x=2014 => x+1 = 2015

f(2014) = x^17 - (x+1)x^16 + ... + (x+1)x -1
= x^17 - x^17 - x^16 + x^16 - x^15 - ... + x^2 + x -1
= x - 1 = 2013

20 tháng 4 2019

Ta thấy \(x=2014\Rightarrow x+1=2015\)

Ta có: \(f\left(2014\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-...+\left(x+1\right)x-1\)

                     \(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-...+x^2+x-1\)

                     \(=x-1\)(1)

Thay x=2014 vào  (1) ta được:

   \(f\left(2014\right)=2014-1\)

                      \(=2013\)

5 tháng 8 2020

Mình camon bạn nhiềuuuuu ❤

29 tháng 2 2016

f(2014)=2013 k cho mình đi

1 tháng 3 2016

bạn có chắc không

25 tháng 4 2018

tính f(2014) nha

27 tháng 5 2018

f(x) = x17-2015x16+2015x15-2015x14+...+2015x-1

ta có x=2014

=> 2015=2014+1=x+1

f(x)=x17-(x+1)x16+(x+1)x15-(x+1)x14+...+(x+1)x-1

=x17-x17-x16+x16+x15-x15-x14+...+x2+x-1

=x-1

=2014-1=2013

6 tháng 5 2018

Nếu \(x=2014\Rightarrow x+1=2015\)

Ta có : 

\(P\left(x\right)=x^4-2015x^3+2015x^2-2015x+2015\)

\(\Rightarrow P\left(2014\right)=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(\Rightarrow P\left(2014\right)=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)

\(\Rightarrow P\left(2014\right)=0+0+0+0+1\)

\(\Rightarrow P\left(2014\right)=1\)

Vậy \(P\left(2014\right)=1\)