Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC và AO là phân giác của góc BAC
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra AO là đường trung trực của BC
=>OA\(\perp\)BC
c: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Ta có: AO là phân giác của góc BAC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)
Ta có: ΔOBA vuông tại B
=>\(BO^2+BA^2=OA^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt{3}\)
Xét ΔBAC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔBAC đều
=>\(S_{BAC}=\dfrac{BA^2\cdot\sqrt{3}}{4}=\dfrac{3R^2\cdot\sqrt{3}}{4}\)
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA⊥BC
Câu hỏi của Khánh Trân Phan - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AB = AC. Lại có OB = OC nê AO là đường trung trực của BC hay \(OA\perp BC\)
Do CD là đường kính nên \(\widehat{DBC}=90^o\Rightarrow BD\perp BC\)
Từ đó suy ra AO // BD.
b) Ta thấy \(\widehat{ABE}=\widehat{ADB}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)
Vậy nên \(\Delta ABE\sim\Delta ADB\left(g-g\right)\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO, đường cao BH, áp dụng hệ thức lượng ta có:
\(AB^2=AH.AO\)
Vậy nên \(AE.AD=AH.AO\)
c) Do \(AE.AD=AH.AO\Rightarrow\frac{AE}{AO}=\frac{AH}{AD}\)
\(\Rightarrow\Delta AEH\sim\Delta AOD\left(c-g-c\right)\Rightarrow\widehat{AHE}=\widehat{ADO}\)
Xét tam giác OED có OE = OD nên nó là tam giác cân. Vậy thì \(\widehat{ADO}=\widehat{OED}\)
Suy ra \(\widehat{AHE}=\widehat{OED}\)
d) Gọi giao điểm của AO với đường tròn (O) là O'. Ta chứng minh O' là tâm đường tròn nội tiếp tam giác ABC.
Thật vậy, nối O'C. Ta có theo tính chất hai tiếp tuyến cắt nhau thì \(\widehat{BOO'}=\widehat{O'OC}\Rightarrow\widebat{BO'}=\widebat{O'C}\Rightarrow\widehat{BCO'}=\widehat{O'CA}\)
Hay O' thuộc phân giác góc ACB. Lại có O' thuộc OA chính là phân giác góc A. Từ đó suy ra O' là giao điểm 3 đường phân giác trong tam giác ABC. Vậy thì O'H = r.
Khi đó HO = OO' - O'H = R - r
Xét tam giác BCD có O là trung điểm CD, OH // BD nên HO là đường trung bình của tam giác CBD. Vậy thì BD = 2HO = 2(R - r)
Kẻ các tiếp tuyến AM,AN với đường tròn (M,N là hai tiếp điểm) .... Cho đường tròn (O),điểm A nằm bên ngoài đường tròn,kẻ tiếp tuyến AM,AN(M,N là các tiếp .... b. vẽ đường kính BC. chứng minh rằng AC song song với MO .... Cho đường tròn (O;R), hai tiếp tuyến MA và MB của đường tròn, AB cắt OM tại H