\(\Delta\)ABC nhọn , đg cao AH. Gọi M và N lần lượt là trung điểm của AB, AC. Từ B kẻ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC và MN=1/2BC

=>ND//BC 

Xét tứ giác BDNC có

BD//NC

DN//BC

DO đó; BDNC là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là trung tuyến

nên HM=AM(1)

Ta có: ΔAHC vuông tại H

mà HN là trung tuyến

nên HN=AN(2)

Từ (1) và (2) suy ra MN là trung trực của AH

=>DN là trung trực của AH

=>DA=DH

mà DA=NB

nên DH=NB

Xét tứ giác DBHN có

DN//BH

DH=NB

DO đó: DBHN là hình thang cân

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

Xét tứ giác BDNC có 

DN//BC

BD//NC

Do đó: BDNC là hình bình hành

b: Xét tứ giác BDNH có BH//DN

nên BDNH là hình thang

6 tháng 1 2020

Hướng dẫn a,b

Tự vẽ hình

a) M , N là trung điểm AB , AC => MN là đường trung bình của tam giác ABC

=> MN//BC => DN//BC . Mà BD// NC => Tứ giác BDNC là hbh

b) Có \(\widehat{NCH}=\widehat{NDB}\) ( hình bình hành )

Tam giác AHC vuông có trung tuyến HN = 1/2 AC = NC => Tam giác NHC cân => \(\widehat{NCH}=\widehat{NHC}\)

=> \(\widehat{NDB}=\widehat{NHC}\)

Mà NHC = NHD (so le trong ) = > NHD = NBD

=> BDNH là hình thang cân

16 tháng 12 2020

a) Xét ΔAEC có

H là trung điểm của EC(E và C đối xứng với nhau qua H)

D là trung điểm của AC(gt)

Do đó: HD là đường trung bình của ΔAEC(Định nghĩa đường trung bình của tam giác)

⇒HD//AE và \(HD=\dfrac{AE}{2}\)(Định lí 2 về đường trung bình của tam giác)

b) Ta có: HD//AE(cmt)

mà I∈HD(gt)

nên AE//IH

Ta có: AI//BC(gt)

mà H∈BC

và E∈BC

nên AI//EH

Xét tứ giác AEHI có 

AI//EH(cmt)

AE//HI(cmt)

Do đó: AEHI là hình bình hành(Dấu hiệu nhận biết hình bình hành)

30 tháng 12 2021

a: Xét ΔHAB có 

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB

hay ABNM là hình thang

Câu 1: (3,5 điểm). Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC, từ M kẻ MD ⊥ AB tại D và ME ⊥ AC tại E (D ∈ AB, E ∈ AC)a) Chứng minh: Tứ giác ADME là hình chữ nhật.b) Gọi F là điểm đối xưng của điểm M qua điểm E.Chứng minh: tứ giác AMCF là hình thoi.c) Gọi I, K lần lượt là trung điểm của BM và MC.CMR: DI + EK = AMd) Gọi N là giao điểm của AM và BE. Chứng minh: AF = 3MNBài 2:...
Đọc tiếp

Câu 1: (3,5 điểm). Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC, từ M kẻ MD ⊥ AB tại D và ME ⊥ AC tại E (D ∈ AB, E ∈ AC)

a) Chứng minh: Tứ giác ADME là hình chữ nhật.

b) Gọi F là điểm đối xưng của điểm M qua điểm E.

Chứng minh: tứ giác AMCF là hình thoi.

c) Gọi I, K lần lượt là trung điểm của BM và MC.

CMR: DI + EK = AM

d) Gọi N là giao điểm của AM và BE. Chứng minh: AF = 3MN

Bài 2: (3,5 điểm) Cho ∆ABC nhọn. Gọi M là trung điểm của AB. Đường thẳng qua M và song song với BC cắt AC tại N, đường thẳng qua B và song song với AC cắt đường thẳng MN tại D.

a/ Chứng minh tứ giác BCND là hình bình hành

b/ Vẽ đường cao AH của ∆ABC. Lấy điểm K sao cho N là trung điểm của HK.

CMR: tứ giác AHCK là hình chữ nhật.

c/ Chứng minh tức giác BHND là hình thang cân.

d/ Đường thẳng qua N và song song với HM cắt đường thẳng DK tại E. Chứng minh DE = 2EK

 

 

 

                                                         

 

 

 

1
7 tháng 7 2016

Câu c: Ta sẽ cm góc BDN = góc HND ( vì cùng bằng góc AND)

Thật vậy:  BDN  = AND slt

                    HND = AND (dễ cm tam giác ANH cân tại N, AH dễ cm là đường cao, nên đồng thời là phân giác)

 Þtứ giác BHND là hình thang cân

Câu d: Gọi I là giao điểm của HM và DK

Xét tứ giác ADBN có

BD = AN  (=HN vì BHND là hình thang cânÞ BD = HN, AHCK là hcn ÞAN = HN)

suy ra  Tứ giác ADBN là hbh ÞM là trung điểm của DN suy ra MD = MN

Xét tam giác EDN có MI song song EN, MD = MN (cmt)suy ra  MI là đường trung bình hay ID = IE (1)

Tương tự xét tam giác KIH có NE là đường trung bình hay EK = IE (2)

Từ (1) và (2) suy ra  ID = IE = EK. Vậy DE = 2EK