\(\Delta ABC\)cân tại A. Vẽ điểm \(D\in AB\)và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHE có

AC là đường cao

AC là đường trung tuyến

Do đó: ΔAHE cân tại A

=>AC là phân giác của góc HAE

Xét ΔAHC và ΔAEC có

AH=AE
góc HAC=góc EAC
AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: góc AEC=90 độ

=>AE vuông góc với CE

b:Ta có; AB<AC

nên góc C<góc B

=>90 độ-góc C>90 độ-góc B

=>góc CAH>góc BAH

5 tháng 3 2020

A B C E D

Gọi BE là đường thẳng song song với AD; \(E\in AC\)

Vì \(BE//AD\Rightarrow\widehat{ABE}=\widehat{BAD}\)( hai góc so le trong )

Mà vì AD là tia phân giác của \(\widehat{BAC}\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{\widehat{BAC}}{2}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{ABE}=60^o\)

Lại có : \(\widehat{BAC}+\widehat{BAE}=180^o\)\(E\in BC\))

\(\Rightarrow120^o+\widehat{BAE}=180^o\Rightarrow\widehat{BAE}=180^o-120^o=60^o\)

Xét \(\Delta ABE\)có : \(\widehat{BAE}=\widehat{ABE}=60^o\)

\(\Rightarrow\Delta ABE\)là tam giác đều ( tính chất + hệ quả tam giác cân )

\(\Rightarrow BE=AE=AB=6\)( Đơn vị đo )

Do \(BE//AD\Rightarrow\frac{AD}{BE}=\frac{AC}{EC}=\frac{12}{AC+AE}=\frac{12}{12+6}=\frac{12}{18}=\frac{2}{3}=\frac{AD}{6}\)

\(\Rightarrow AD=\frac{2\cdot6}{3}=4\)( đơn vị đo ) 

Một lần nữa tớ lại xin lỗi vì cái hình củ chuối ạ. Mong cậu xem phần mình chứng minh để dựng hình sao cho chuẩn với đề bài.