Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
a) Hình tự vẽ dễ dàng.
Ta có : \(\widehat{E}=\widehat{EGH}=60^o\)mà hai góc này nằm ở vị trí so le trong => GH//Dx ( điều phải chứng minh ).
b) Ta có : \(\widehat{GDF}\&\widehat{D}\)là hai góc nằm ở vị trí kề bù
\(\Rightarrow\widehat{GDF}+\widehat{D}=180^o\Leftrightarrow\widehat{GDF}=180^o-\widehat{D}=180^o-60^o=120^o\)
Vì Dx là tia phân giác góc GDF nên : \(\widehat{GDx}=\widehat{FDx}=\frac{\widehat{GDF}}{2}=\frac{120^o}{2}=60^o\)( 1 )
Áp dụng tính chất tổng ba góc trong 1 tam giác : \(\widehat{E}+\widehat{D}+\widehat{F}=180^o\Leftrightarrow\widehat{F}=180^o-\widehat{E}-\widehat{D}=180^o-60^o-60^o=60^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{FDx}=\widehat{F}=60^o\)mà hai góc này nằm ở vị trí so le trong => Dx//EF ( điều phải chứng minh ).
Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK
Xét \(\Delta AMN\)và \(\Delta KMB\)có\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)
\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)
\(\Rightarrow AN=BK=AM\)
mà \(AB>AM\Rightarrow AB>BK\)
\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)
\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)
Trên tia đồi của tia MA lấy điểm D sao cho: MA=MD
Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)
mặt khác:
\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)
Bài giải
a) \(\Delta AOC=\Delta BOC\left(c-g-c\right)\)\(\Rightarrow AC=BC\)
và \(\widehat{OAC}=\widehat{OBC}\)mà\(\widehat{OAC}+\widehat{CAx}=180^o\),do đó \(\widehat{xAC}=\widehat{yBC}\)
b) Gọi giao điểm của AB với tia Oz là H,ta có :
\(\Delta OHA=\Delta OHB\left(c-g-c\right)\),do đó \(\widehat{AHO}=\widehat{OHB}\)mà
\(\Delta OHA=\Delta OHB=90^o\)
\(\Rightarrow\)\(AB\perp Oz\)
P/s Hình hơn xấu :)
Moọe,làm xong tự nhiên olm tải lại tap.
Vẽ giùm cái hình (hồi nãy vẽ hình đẹp lắm mà giờ bị mất->lười vẽ)
a)Xét tam giác DMB và AME có:
\(\hept{\begin{cases}MA=MD\left(gt\right)\\\widehat{AME}=\widehat{DMB}\left(đđ\right)\\BM=EM\left(gt\right)\end{cases}}\Rightarrow\Delta DMB=\Delta AME\Rightarrow AE=BD\)
b)Từ \(\Delta DMB=\Delta AME\Rightarrow\widehat{MDB}=\widehat{MAE}=90^o\Rightarrow AE//BD\) (so le trong) (1)
Đến đây chứng minh FA // DC bằng cách chứng minh tam giác AMF = tam giác DMC để suy ra góc CMD = góc AMF = 90o (so le trong)
Từ đó suy ra E;A;F thẳng hàng.