Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . xét Δ AMC và Δ DMB có
CM = BM (M là trung điểm của BC )
∠AMC = ∠BMD (hai góc đối đỉnh )
AM = DM (gt)
=> ΔAMC = ΔDMB (c - g - c)
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
\(\widehat{BMD}=\widehat{AMC}\left(đối.đỉnh\right)\)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: \(\widehat{DBM}=\widehat{MCA}\left(\Delta AMC=\Delta DMB\right)\)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà \(\widehat{BAC}=90^0\)
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
\(AM=MC\left(=\dfrac{1}{2}AD=\dfrac{1}{2}BC\right)\)
=> ΔAMK=ΔCMK(c.c.c)
=> \(\widehat{MKA}=\widehat{MKC}=180^0:2=90^0\Rightarrow MK\perp AC\)
Mà AC//BD(ABDC là hình chữ nhật)
\(\Rightarrow MK\perp BD\)
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
ˆBMD=ˆAMC(đối.đỉnh)BMD^=AMC^(đối.đỉnh)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: ˆDBM=ˆMCA(ΔAMC=ΔDMB)DBM^=MCA^(ΔAMC=ΔDMB)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà ˆBAC=900BAC^=900
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
AM=MC(=12AD=12BC)AM=MC(=12AD=12BC)
=> ΔAMK=ΔCMK(c.c.c)
=> ˆMKA=ˆMKC=1800:2=900⇒MK⊥ACMKA^=MKC^=1800:2=900⇒MK⊥AC
Mà AC//BD(ABDC là hình chữ nhật)
⇒MK⊥BD
b,xét tam giác BAE có BA=BE(Gt)
⇒
⇒tam giac BAE Cân tại B
Mà BD là dường phân giác
⇒
⇒BD đồng thời là đường trung trực của AE
C suy ra góc HAE bằng góc DAE
xét tam giác HAE và tam giác KAE:
.AE là cạnh huyền chung
.góc HAE bằng góc DAE
suy ra :tam giác HAE = tam giác KAE( ch-gn)
suy ra EH=EK (1)
Ta lại có tam giác EKC vuông tại K nên:
EK<EC( cạnh góc vuông bé hơn cạnh huyền) (2)
Từ (1) và (2) suy ra EH<EC
làm được mỗi 2 câu ko bt có đúng ko
a)xét ΔABE và ΔADE có:
AE là cạnh chung
\(\widehat{DAE}=\widehat{BAE}\)(AE là tia phân giác của \(\widehat{BAD}\))
AD=AB(gt)
⇒ ΔABE=ΔADE(c-g-c)
b)gọi I là giao điểm của AE và BD ta được:
xét ΔADI và ΔABI có:
AI là cạnh chung
\(\widehat{DAI}=\widehat{BAI}\)(AI là tia phân giác của \(\widehat{BAD}\))
AD=AB(gt)
⇒ΔADI=ΔABI(c-g-c)
⇒.ID=IB(2 cạnh tương ứng)(1)
.\(\widehat{DIA}=\widehat{BIA}\)(2 góc tương ứng)(2)
Mà \(\widehat{DIA}+\widehat{BIA}=180^o\)(2 góc kề bù)(3)
Từ (2) và (3) ⇒\(\widehat{DIA}=\widehat{BIA}=\dfrac{180^o}{2}=90^o\)(4)
Từ (1) và (4) ⇒AE là trung trực của BD(đ.p.c.m)
c)xét ΔEBF có:EF là cạnh huyền⇒EF>EB
Mà DE=BE
⇒DE<EF(đ.p.cm)
d)ta có:
vì ΔABE=ΔADE ⇒\(\widehat{EBA}=\widehat{EDA}=90^o\)
xét ΔCDE và ΔFBE có:
\(\widehat{EBF}=\widehat{EDC}=90^o\)
\(\widehat{CED}=\widehat{FEB}\)(2 góc đối đỉnh)
ED=EB( ΔABE=ΔADE)
⇒ ΔCDE=ΔFBE(g-c-g)
⇒CE=EF(2 cạnh tương ứng)
⇒ΔCEF cân tại E
⇒\(\widehat{CFE}=\dfrac{180^o-\widehat{CEF}}{2}\)
vì ΔABE=ΔADE⇒ED=EB(2 cạnh tương ứng)
⇒ΔEDB cân tại E
⇒\(\widehat{EDB}=\dfrac{180^o-\widehat{DEB}}{2}\)
Mà \(\widehat{DEB}=\widehat{CEF}\)(2 góc đối đỉnh)
⇒\(\widehat{CFE}=\widehat{BDE}\)
⇒CF//BD
Mà AG⊥BD
⇒AG⊥CF(đ.p.cm)
a, Ta có: AM=MD (gt)
MC=MB(gt)
\(\widehat{AMC}=\widehat{BMD}\)( góc đối tạo bởi hai đường thẳng)
=> \(\Delta AMC=\Delta DMB\)(1)
b, (1) => AC=BD
c, Ta có: góc MAC= góc MBD ( ΔAMC=ΔDMB)
=> AC// BD
mà AC vuông góc AB => BD vuông góc AC