\(Cho:A=n\left(n-1\right)\left(n^2+1\right)\left(n^2+1\right)\)Với \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

Neu n la so chan thi n(n+3) chia het cho 2

Neu n la so le thi n+3 la so chan (vi le +le = chan)

                           => n(n+3) chia het cho 2

vay n(n+3) chia het cho 2 voi moi n la stn

10 tháng 4 2018

a)A=n/n+1=n/n+0/1

   B=n+2/n+3=n/n  +  2/3

ta có:0<2/3

=>A<B

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

13 tháng 6 2020

A = 1.2.3 + 2.3.4 + 3.4.5 ... + n(n + 1)(n + 2)

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + n(n + 1)(n + 2).4

4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2)+ ... + n(n + 1)(n + 2)[(n + 3) - (n - 1)]

4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + n(n + 1)(n + 2)(n + 3) - (n-1)n(n+1)(n+2)

4A = n(n+1)(n+2)(n+3)

A = n(n + 1)(n+2)(n + 3) : 4

23 tháng 2 2018

Với n = 1 => Ta có: (1+1) = 2 chia hết cho 21

Giả sử n = k thì (k+1).(k+2)...2k chia hết cho 2k

Cần chứng minh: (k+1+1).(k+1+2)...2(k+1) chia hết cho 2k+1

Ta có: (k+1+1).(k+1+2)...2(k+1) = (k+2).(k+3)....2k.2(k+1) = 2.(k+1).(k+2)...2k chia hết cho 2.2= 2k+1

Vậy (n+1)(n+2)....2n chia hết cho 2(với mọi n thuộc N*)

23 tháng 2 2018

Nhân \(\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n\) với \(2.4.6.8...2n\)

Ta được: \(\left(2.4.6...2n\right)\left(n+1\right)\left(n+2\right)...2n\)

=\(\left(1.2.3..n\right).2^n\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n⋮2^n\)

\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n⋮2^n\)