\(Cho\)A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

=1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015

Trừ tất cả ta được 1-1/2015=2014/2015

26 tháng 10 2016

=1-1/2+1/2-1/3+1/3-1/4+.....+1/2014-1/2015

=1-1/2015=2014/2015

28 tháng 11 2015

\(A=1-\frac{1}{2015}\)

\(A+\frac{1}{2015}=2x\Leftrightarrow1-\frac{1}{2015}+\frac{1}{2015}=2x\Leftrightarrow2x=1\Rightarrow x=\frac{1}{2}\)

28 tháng 11 2015

A=1\(-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2014}-\frac{1}{2015}\)

=> A= \(1-\frac{1}{2015}\)

A=\(\frac{2014}{2015}\)

A+\(\frac{1}{2015}=2x\)

<=>\(\frac{2014}{2015}+\frac{1}{2015}=2x\)

=>\(2x=1\)

\(=>x=\frac{1}{2}\)

14 tháng 11 2015

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2014}-\frac{1}{2015}\)

\(A=1-\frac{1}{2015}\)

/A/ + \(\frac{1}{2015}\)=2x

1- \(\frac{1}{2015}\)+\(\frac{1}{2015}\)=2x 

=> x = 1/2

31 tháng 12 2017

\(\frac{1}{1.2}\)\(+\frac{1}{2.3}+\)\(\frac{1}{3.4}\)\(+\)\(.............+\)\(\frac{1}{2017.2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=\frac{1}{1}-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

31 tháng 12 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}\)

 \(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{2018-2017}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

2 tháng 8 2017

Ta có công thức :

\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}=\frac{n-1}{n}\)

2 tháng 8 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\)

25 tháng 12 2016

Hỏi thật không

2 tháng 12 2016

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{1}-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

2 tháng 12 2016

bạn nói rõ câu trả lời ra dc ko

29 tháng 8 2018

\(-\frac{1}{1.2}+-\frac{1}{2.3}+-\frac{1}{3.4}+-\frac{1}{4.5}\)

\(=-1\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)

\(=-1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)

\(=-1\left(1-\frac{1}{5}\right)\)

\(=-1.\frac{4}{5}=-\frac{4}{5}\)

29 tháng 8 2018

\(\frac{-1}{1.2}+\frac{-1}{2.3}+\frac{-1}{3.4}+\frac{-1}{4.5}\)

\(=-1\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)

\(=-1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)

\(=-1\left(1-\frac{1}{5}\right)\)

\(=-1.\frac{4}{5}=-\frac{4}{5}\)

1 tháng 10 2019
https://i.imgur.com/YgLNwMe.jpg
23 tháng 11 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

\(A=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=1-\frac{1}{2020}\)

\(=>ĐPCM\)