\(Cho\)\(a,b,c\ne0\)\(sao\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

\(\frac{a}{2013}=\frac{b}{2015}=\frac{c}{2017}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}.\)

\(\Rightarrow\left(\frac{a-b}{-2}\right)x\left(\frac{b-c}{-2}\right)=\left(\frac{a-c}{-4}\right)^2\)

\(\Rightarrow\frac{\left(a-b\right)x\left(b-c\right)}{4}=\frac{\left(a-c\right)^2}{16}\)

\(\Rightarrow\left(a-b\right)x\left(b-c\right)=\frac{\left(a-c\right)^2}{4}\) (dpcm)

15 tháng 10 2016

ket qua la dech biet ma tra loi

27 tháng 7 2020

a, Ta có : \(\left(abc\right)^2=\frac{3}{5}.\frac{4}{5}.\frac{3}{4}=\frac{9}{25}\)

=> \(abc=\frac{3}{5}\)

Mà ab = 3/5

=> c = 1.

=> \(\left\{{}\begin{matrix}b=\frac{4}{5}\\a=\frac{3}{4}\end{matrix}\right.\)

Vậy ...

b, Ta có : \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=36\)

=> \(\left(a+b+c\right)^2=36\)

=> a + b + c = 6.

=> \(\left\{{}\begin{matrix}a=-\frac{12}{6}=-2\\b=\frac{18}{6}=3\\c=\frac{30}{6}=5\end{matrix}\right.\)

Vậy ...

10 tháng 7 2016

\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\Leftrightarrow\frac{y+z}{\frac{1}{a}}=\frac{z+x}{\frac{1}{b}}=\frac{x+y}{\frac{1}{c}}=\)

\(=\frac{y+z-\left(z+x\right)}{\frac{1}{a}-\frac{1}{b}}=\frac{z+x-\left(x+y\right)}{\frac{1}{b}-\frac{1}{c}}=\frac{x+y-\left(y+z\right)}{\frac{1}{c}-\frac{1}{a}}=\frac{y-x}{\frac{b-a}{ab}}=\frac{z-y}{\frac{c-b}{bc}}=\frac{x-z}{\frac{a-c}{ac}}\)

Chia các vế của 3 tỷ lệ thức cuối cho abc ta có:

\(\frac{y-x}{\frac{b-a}{ab}\cdot abc}=\frac{z-y}{\frac{c-b}{bc}\cdot abc}=\frac{x-z}{\frac{a-c}{ac}\cdot abc}=\frac{y-x}{c\left(b-a\right)}=\frac{z-y}{a\left(c-b\right)}=\frac{x-z}{b\left(a-c\right)}\)

Hay: \(\frac{x-y}{c\left(a-b\right)}=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}\)đpcm

18 tháng 7 2016

\(\frac{a-c}{c-b}=\frac{a}{b}\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow ba-bc=ac-ab\)

\(\Rightarrow2ab=ac+bc=c\left(a+b\right)\)

\(\Rightarrow\frac{2ab}{\left(a+b\right)}=c\Rightarrow\frac{a+b}{2ab}=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{a}{ab}+\frac{b}{ab}\right)=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{a}\right)=\frac{1}{c}\)

Câu b ấy, hình như sai đề, phải bằng \(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}\)có lẽ mới đúng

18 tháng 7 2016

nếu như câu b đề như thế thì bạn có thể giải giúp mình được ko? mình cảm ơn bạn nhé!

9 tháng 11 2019

Bài 1:

Có: \(\left\{{}\begin{matrix}a^2=bc\\c^2=ab\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=\frac{c}{a}\\\frac{c}{a}=\frac{b}{c}\end{matrix}\right.\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\\ \Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\\ \Rightarrow C=\frac{a-a}{2019}+\frac{a^2-a^2}{2020}\\ C=\frac{0}{2019}+\frac{0}{2020}=0\)

Bài 2:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\\ \Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\\ \Rightarrow M=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a\cdot a\cdot a\cdot a}\\ M=\frac{\left(2a\right)^4}{a^4}\\ M=\frac{16a^4}{a^4}=16\)

26 tháng 10 2015

a, Ta co : \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(1)

Xet :\(\frac{a}{a+b}=\frac{c}{c+d}\Rightarrow\frac{a}{c}=\frac{a+b}{c+d}\)(2)

Tu (1) va (2) \(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

b

26 tháng 10 2015

trong sách nâng cao và phát triển đó