K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2020

\(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\Leftrightarrow\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=-2\overrightarrow{c}\)

\(\Leftrightarrow\left(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right)^2=\left(-2\overrightarrow{c}\right)^2\)

\(\Leftrightarrow\overrightarrow{a}^2+\overrightarrow{b}^2+\overrightarrow{c}^2+2\left(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\right)=4\overrightarrow{c}^2\)

\(\Leftrightarrow A=\dfrac{4x^2-\left(x^2+y^2+z^2\right)}{2}=\dfrac{3x^2-y^2-z^2}{2}\)

9 tháng 2 2021

Ta có:

\(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\Leftrightarrow\overrightarrow{a}+\overrightarrow{b}=-3\overrightarrow{c}\Leftrightarrow\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=9\overrightarrow{c}^2\)

<=> \(\overrightarrow{a}^2+\overrightarrow{b}^2+2\overrightarrow{a}\overrightarrow{b}=9\overrightarrow{c}^2\)

<=> \(\overrightarrow{a}\overrightarrow{b}=\dfrac{9z^2-x^2-y^2}{2}\)

Tương tự ta có: \(\overrightarrow{b}+3\overrightarrow{c}=-\overrightarrow{a}\) <=> \(\left(\overrightarrow{b}+3\overrightarrow{c}\right)^2=\overrightarrow{a}^2\) 

<=> \(\overrightarrow{b}.\overrightarrow{c}=\dfrac{x^2-y^2-9z^2}{2}\)

Và lại có : \(\overrightarrow{a}\overrightarrow{c}=\dfrac{y^2-x^2-9z^2}{2}\)

Suy ra: A=\(\dfrac{9z^2-x^2-y^2}{2}+\dfrac{x^2-y^2-9z^2}{2}+\dfrac{y^2-x^2-9z^2}{2}=\dfrac{3z^2-z^2-y^2}{2}\)

24 tháng 10 2018

Chương I: VÉC TƠ

Chương I: VÉC TƠ

24 tháng 10 2018

x = BC; y = AC; z = AB đó bạn

AH
Akai Haruma
Giáo viên
20 tháng 9 2017

Lời giải:

câu a)

Lấy điểm $I,J$ thỏa mãn: \(\left\{\begin{matrix} 2\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\\ \overrightarrow{JA}+\overrightarrow{IB}+\overrightarrow{JC}=\overrightarrow{0}\end{matrix}\right.\)

Vì $A,B,C$ cố định nên $I,J$ cũng cố định.

Ta có:

\(|2\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|\)

\(\Leftrightarrow |2\overrightarrow{MI}+2\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|=|\overrightarrow{MJ}+\overrightarrow{JA}+\overrightarrow{MJ}+\overrightarrow{JB}+\overrightarrow{MJ}+\overrightarrow{JC}|\)

\(\Leftrightarrow |3\overrightarrow {MI}|=|3\overrightarrow{MJ}|\Leftrightarrow |\overrightarrow{MI}|=|\overrightarrow{MJ}|\)

Do đó tập hợp điểm M nằm trên đường trung trực của \(IJ\)

câu b)

Lấy hai điểm $H,K$ thỏa mãn: \(\left\{\begin{matrix} 2\overrightarrow{HA}+\overrightarrow{HB}=\overrightarrow{0}\\ \overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{0}\end{matrix}\right. \)

Vì $A,B,C$ cố định nên $H,K$ cũng cố định.

Ta có:

\(|2\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MA}+2\overrightarrow{MB}|\)

\(\Leftrightarrow |2\overrightarrow {MH}+2\overrightarrow{HA}+\overrightarrow{MH}+\overrightarrow{HB}|=|\overrightarrow{MK}+\overrightarrow{KA}+2\overrightarrow{MK}+2\overrightarrow{KB}|\)

\(\Leftrightarrow |3\overrightarrow{MH}|=|3\overrightarrow{MK}|\Leftrightarrow |\overrightarrow{MH}|=|\overrightarrow{MK}|\)

Do đó tập hợp điểm biểu diễn điểm $M$ nằm trên đường trung trực của $HK$