K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

Ta có:

 A=11.13.15 + 13.15.17 + ....+ 91.93.95 + 93.95.97

A= 11.13.3.5+13.3.5.17+...+ 91.93.19.5+ 93.19.5.97

A= 5 (11.13.3+13.3.17+...+ 91.93.19+93.19.97)

Vì 5 chia hết cho 5

=>  5 (11.13.3+13.3.17+...+ 91.93.19+93.19.97)

Vậy A chia hết cho 5 (đpcm)

16 tháng 10 2019

Ta có:

\(A=11.13.15+13.15.17+...+91.93.95+93.95.97\)

\(A=11.13.15+13.3.5.17+...+91.93.95+93.95.97\)

\(A=5\left(11.13.3+13.3.17+...+91.93.19+93.19.97\right)\)

Vì 5 chia hết cho 5

\(=>5\left(11.13.3+13.3.17+...+91.93.19+93.19.97\right)\)

Vậy A chia hết cho 5 (đpcm)

6 tháng 8 2015

A=4+2+23 +2+....220

A=22+2+23 +2+....220

2A=2(4+2+23 +2+....220)

2A=23+2+24 +2+....221

2A-A=(23+2+24 +2+....221)-(22+2+23 +2+....220)

A=23+221-(22+22)

A=8+221-8

A=221

mà 221 chia hết cho 27

vậy  A có chia hết cho 128

24 tháng 11 2017

A chia hết cho128 nhé!

18 tháng 7 2017

a, Theo bài ra ta có:

\(M=\dfrac{2007}{1}+1+\dfrac{2006}{2}+1+.......+\dfrac{2}{2006}+1+\dfrac{1}{2007}+1-2007\)

( Ta thêm 1 vào mỗi một số hạng trong M nên phải bớt đi 2017 vì có 2017 số hạng ) ;'

\(=>M=2008+\dfrac{2008}{2}+\dfrac{2008}{3}+......+\dfrac{2008}{2007}+\dfrac{2008}{2007}-2007\)

\(=>M=\dfrac{2008}{2}+\dfrac{2008}{3}+\dfrac{2008}{4}+.....+\dfrac{2008}{2006}+\dfrac{2008}{2007}+1\)

Ta thấy xuất hiện 2008 chung nên đặt ra ngoài ta có:

\(=>M=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)

\(=>M:N=2008\)

Câu b đợi 1 chút nha.......

18 tháng 7 2017

b, \(M=\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{31.33}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{31.33}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{31}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{33}\)

\(N=\dfrac{12}{11.13.15}+\dfrac{12}{13.15.17}+...+\dfrac{12}{31.33.35}\)

\(=3\left(\dfrac{4}{11.13.15}+\dfrac{4}{13.15.17}+...+\dfrac{4}{31.33.35}\right)\)

\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{13.15}+\dfrac{1}{13.15}-\dfrac{1}{15.17}+...+\dfrac{1}{31.33}-\dfrac{1}{33.35}\right)\)

\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{33.35}\right)\)

\(=\dfrac{92}{5005}\)

\(\Rightarrow M:N=\dfrac{1}{33}:\dfrac{92}{5005}=\dfrac{455}{276}\)

Vậy...