Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-3\right)\)
=4m^2-8m+4-4m+12
=4m^2-12m+16
=4m^2-12m+9+7=(2m-3)^2+7>0
=>Phương trình luôn có nghiệm
b: =>(x1+x2)^2-2x1x2=10
=>(2m-2)^2-2(m-3)=10
=>4m^2-8m+4-2m+6-10=0
=>4m^2-10m=0
=>2m(2m-5)=0
=>m=0 hoặc m=5/2
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)
a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)
\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\)
\(\Leftrightarrow4>0\)(luôn đúng)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
b) Để t nghĩ tí
\(a+b+c=1-m+m-1=0\)
\(\Rightarrow\) Pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
\(\frac{2.1\left(m-1\right)+3}{1+\left(m-1\right)^2+2\left(1+m-1\right)}=1\)
\(\Leftrightarrow2m+1=m^2+2\)
\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)
\(\Delta=\left(2m+5\right)^2-4\left(m-1\right)=4m^2+16m+29=4\left(m+2\right)^2+13>0;\forall m\)
\(\Rightarrow\) Phương trình có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m-5\\x_1x_2=m-1\end{matrix}\right.\)
Ta có: \(2\left(x_1+x_2\right)=3x_1x_2\)
\(\Leftrightarrow2\left(-2m-5\right)=3\left(m-1\right)\)
\(\Leftrightarrow7m=-7\)
\(\Leftrightarrow m=-1\)
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
Ta có: \(\Delta=m^2+8>0\) nên phương trình luôn có 2 nghiệm phân biệt.
Giờ ta tìm điều kiện để phương trình có 2 nghiệm thỏa mãn
\(\orbr{\begin{cases}x_1< x_2\le-1\\x_1>x_2\ge1\end{cases}}\)
TH 1: \(x_1< x_2\le-1\)
\(\Rightarrow\hept{\begin{cases}2\left(2.\left(-1\right)^2+m-1\right)\ge0\\\frac{m}{4}< -1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m\ge-1\\m< -4\end{cases}}\) không có m thỏa mãn
TH 2: \(x_1>x_2\ge1\)
\(\Rightarrow\hept{\begin{cases}2\left(2.\left(1\right)^2-m-1\right)\ge0\\\frac{m}{4}>1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m\le1\\m>4\end{cases}}\) không có m thỏa mãn
Vậy với mọi m thì phương trình luôn tồn tại ít nhất 1 nghiệm thỏa mãn
\(-1< x< 1\) hay \(|x|< 1\)