Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của lê thị ngọc tú:Bạn tham khảo câu 2 tại đây nhé!
Đề \(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)\(\left(ĐKXĐ:a,b,c\ne0\right)\)\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac\right)+\left(abc+bc^2+ac^2-abc\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\a+c=0\end{cases}\RightarrowĐpcm}\)
Ta có:
a/(a+b) > a/(a+b+c); b/(b+c) > b/(a+b+c); c/(c+a) > c/(a+b+c)
=> a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(a+b+c) + c/(a+b+c) = (a+b+c)/(a+b+c) = 1
=> S > 1 (1)
Mà:
a/(a+b) < (a+b)/(a+b+c); b/(b+c) < (b+c)/(a+b+c); c/(c+a) < (c+a)/(a+b+c)
=> a/(a+b) + b/(b+c) + c/(c+a) < (a+b)/(a+b+c) + (b+c)/(a+b+c) + (c+a)/(a+b+c) = 2(a+b+c)/(a+b+c) = 2
=> S < 2 (2)
Từ (1) và (2) => 1 < S < 2
=> S không có g.trị nguyên.
2. Ta có: n + S ( n ) + S ( S (n) ) = 60
Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) )
=> n + n + n \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60
=> 3n \(\ge\)60
=> n \(\ge\)20
=> 20 \(\le\)n \(\le\)60
Đặt: n = \(\overline{ab}\)
=> \(2\le a\le6\)
và \(2+0\le a+b\le5+9\)
=> \(2\le a+b\le14\)
a + b | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
\(\overline{ab}\) | 56 | 54 | 52 | 50 | 48 | 46 | 44 | 42 | 40 | 47 | 45 | 43 | 41 |
loại | loại | loại | tm | loại | loại | tm | loại | loại | tm | loại | loại | loại |
Vậy n = 50; n = 44 hoặc n = 47
1. Ta có: a + 3c = 2016 ; a + 2b = 2017
=> a + 3c + a + 2b = 2016 + 2017
=> 2a + 2b + 2c + c = 4033
=> 2 ( a + b + c ) = 4033 - c
mà a, b, c không âm
=> c \(\ge\)0
Để P = a + b + c đạt giá trị lớn nhất
<=> 2 ( a + b + c ) đạt giá trị lớn nhất
<=> 4033 - c đạt giá trị lớn nhất
<=> c đạt giá trị bé nhất
=> c = 0
=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2
Vậy max P = 0 + 2016 + 1/2 = 4033/2
a/ Ta có :
\(12^8=\left(12^2\right)^4=24^4\)
\(8^{12}=\left(8^3\right)^4=512^4\)
Vì \(24^4< 512^4\Leftrightarrow12^8< 8^{12}\)
b/ Ta có :
\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}=\left(-125\right)^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}=\left(-128\right)^{13}\)
Vì \(\left(-125\right)^{13}>\left(-128\right)^{13}\Leftrightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)