K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Leftrightarrow 3x^2-10xy+3y^2=0\Leftrightarrow (x-3y)(3x-y)=0\)

Thay trường hợp vòa là xong

4 tháng 3 2020

Cô Nguyễn Linh Chi : Cho e hỏi là bài này không cần chia, mà ta chỉ cần chuyển vế,phân tích đa thức thành nhân tử rồi thay vào để tính biểu thức A có được không ạ ??

Khi đó ta có là : \(\hept{\begin{cases}x=y\\2018x=-2019y\end{cases}}\)

Rồi nhận xét loại đc TH \(2018x=-2019y\) do x,y không cùng > 0

Khi đó có : \(A=\frac{2018x+x}{2019x-2018x}=2019\)

Em thấy dễ dàng hơn cô ạ !!

4 tháng 3 2020

\(2018x^2+xy=2019y^2\)

chia cả hai vế cho y^2 ta có:

\(2018.\left(\frac{x}{y}\right)^2+\frac{x}{y}-2019=0\)

Đặt: \(t=\frac{x}{y}>0\)ta có: \(2018t^2+t-2019=0\Leftrightarrow2018t^2-2018t+2019t-2019=0\)

<=> \(2018t\left(t-1\right)+2019\left(t-1\right)=0\)

<=> \(\left(t-1\right)\left(2018t+2019\right)=0\)

<=> \(\orbr{\begin{cases}t-1=0\\2018t+2019=0\end{cases}}\)

<=> \(\orbr{\begin{cases}t=1\left(tm\right)\\t=-\frac{2019}{2018}\left(loai\right)\end{cases}}\)

Ta có: \(A=\frac{2018x+y}{2019x-2018y}=\frac{2018.\frac{x}{y}+1}{2019.\frac{x}{y}-2018}=\frac{2018t+1}{2019t-2018}=\frac{2018+1}{2019-2018}=2019\)

23 tháng 6 2017

Ta có :

(x + y)2 = (30)2 = 900

<=> x2 + 2xy + y2 = 900

<=> x2 - 2xy + y2 + 4xy = 900

<=> (x - y)2 = 900 - 4.216 = 36

Mà x > y

=> x - y luông dương

=> x - y = 6

=> A = (x + y)(x - y) = 30 . 6 = 180 

23 tháng 6 2017

Ta có:

\(\left(x+y\right)^2=x^2+2xy+y^2=30^2=900\))0

=> \(x^2-2xy+y^2=900-216.4=36\)

=> x-y =6

=> \(x^2-y^2=\left(x+y\right)\left(x-y\right)=30.6=180\)

20 tháng 6 2015

Bổ sung thêm 

b)Ta có (x2 - y2)= x4 -2x2y2 +y4

hay          602      =     x4 +y4 - 2(xy) 2

nên           3600   =    x4 +y- 2*36

Vậy     x4 +y= 3600 -72=3528

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

20 tháng 7 2016

a) Từ \(x-y=7=>\left(x-y\right)^2=7^2=>x^2-2xy+y^2=49\)

\(=>x^2+y^2=49+2xy=49+2.60=169\)

\(=>x^2+y^2+2xy=169+2xy=>\left(x+y\right)^2=169+2.60=289=17^2=\left(-17\right)^2\)

\(=>x+y=17\) hoặc \(x+y=-17\)

Mà theo đề: x>y>0 nên x+y > 0,vậy loại x+y=-17

=>x+y=17

Do đó \(x^2-y^2=\left(x-y\right).\left(x+y\right)=7.17=119\)

Vậy........

b) Ta có: \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2-y^2\right)^2+2x^2y^2\) (theo hđt mở rộng:\(a^2+b^2=\left(a-b\right)^2+2ab\) )

\(=119^2+2.\left(xy\right)^2=119^2+2.60^2=21361\)

Vậy......