\(\frac{x}{2}+\frac{2}{x-1}\),x>1. Định x để y đạt GTNN

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2015

Áp dụng bất đẳng thức Côsi:

\(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(\frac{x-1}{2}=\frac{2}{x-1}\Leftrightarrow x-1=\sqrt{2.2}\Leftrightarrow x=3\)

Vậy GTNN của y (khi x > 1) là 5/2.

17 tháng 8 2018

x2-2+\(\frac{1}{x^2}\) +x2-xy+\(\frac{y^2}{4}=2-xy\)

=>\(\left(x-\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)

Do VT\(\ge0\)=> 2-xy\(\ge0\)

                       =>xy\(\le2\)

 Vậy Maxxy=2 (dấu bằng tự làm)

17 tháng 8 2018

à mình đọc nhầm tưởng là gtln.

 \(x^2-2+\frac{1}{x^2}+x^2\)\(+xy+\frac{y^2}{4}=2+xy\)

=>\(\left(x-\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2\)=2+xy

Do VT\(\ge0\)=> 2+xy\(\ge0\)

                      =>xy\(\ge-2\)

Vậy Minxy=2

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

1 tháng 10 2019
https://i.imgur.com/gHPfwmz.jpg
NV
1 tháng 10 2019

\(Q\ge2xy+\frac{2}{xy}=2xy+\frac{1}{8xy}+\frac{15}{8xy}\ge2\sqrt{\frac{2xy}{8xy}}+\frac{15}{2\left(x+y\right)^2}\ge1+\frac{15}{2}=\frac{17}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

17 tháng 12 2023

Cao nhân nào giải được bài này chưa

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

22 tháng 9 2019

Nugget nghĩ pạn ghi lộn đề! Vì nếu x>0; y>0 -> x=1 và y=1 (giả thiết) thì làm sao x+y=1 được???

Thui Nugget về Kindergarten đây, tạm biệt.

22 tháng 9 2019

Nếu x=1/2; y=1/2 thì sao ?

7 tháng 10 2019

Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(BĐT Svacxo)

\(\Rightarrow\frac{1}{2}\ge\frac{4}{x+y}\)

\(\Leftrightarrow x+y\ge8\)(1)

Áp dụng BĐT Cauchy cho 2 số không âm:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)

\(\Rightarrow\frac{1}{2}\ge\frac{2}{\sqrt{xy}}\)

\(\Leftrightarrow\sqrt{xy}\ge4\)(2)

Từ (1) và (2) suy ra \(x+\sqrt{xy}+y\ge16\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge16\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge4\)

10 tháng 10 2019

Muốn cô k cũng dễ lắm. Tuy nhiên cái cô muốn là các em làm được bài trên OLM sẽ nhìn ra được những lỗi sai của mình thì để lần sau trong các cuộc thi HSG hay các bài kiểm tra trên lớp sẽ không bị mắc phải những cái lỗi tương tự.

bài phía dưới: Từ (1) , (2) => \(x+2\sqrt{xy}+y\ge16\) nha

Bỏ qua lỗi này. Cái quan trọng là khi tìm giá trị lớn nhất hoặc nhỏ nhất em cần phải biết nó đạt tại x =?, y=?.

nếu bỏ qua phần này sẽ bị trừ điểm rất nặng. :)

7 tháng 10 2019

tích cho t nha

7 tháng 10 2019

làm đi r le duy manh