\(ax^2\) + bx +c

tim a, b,c biet f(0)= 5 ;f(1 ) = 3;f(-2)=4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

\(f\left(0\right)=5\\ \Leftrightarrow a\cdot0^2+b\cdot0+c=c=5\\\Rightarrow c=5\\ f\left(1\right)=3\\ \Leftrightarrow a\cdot1^2+b\cdot1+c=a+b+5=3\\ \Leftrightarrow a+b=-2\\ \Leftrightarrow2a+2b=-4\\ f\left(-2\right)=4\\ \Leftrightarrow a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+c=4a-2b+5=4\\ \Leftrightarrow4a-2b=-1\\ 2a+2b+4a-2b=-4+\left(-1\right)\\ \Leftrightarrow6a=-5\\ \Leftrightarrow a=\dfrac{-5}{6}\\ a+b=-2\\ \Leftrightarrow\dfrac{-5}{6}+b=-2\\ \Leftrightarrow b=\dfrac{-7}{6}\)

13 tháng 1 2018

thank you verry much

11 tháng 12 2015

 

+f(0)= a.0 +b.0 + c =-3  => c = -3

+f(1) = a.12 +b.1-3 = 0 => a+b =3 (1)

+f(-1) = a(-1)+b(-1) -3 =-10 => a -b = -7 (2)

(1)(2) => a =(-7+3):2= -2

             b =3-(-2) = 5

18 tháng 11 2019

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(-2\right)=4a-2b+c\)

\(f\left(3\right)=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)(vì 13a+b+2c=0)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(-2\right)\right]^2\le0\)( đpcm)

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

5 tháng 4 2021

\(f\left(0\right)=ax^2+bx+c=a.0^2+b.0+c=c=4\)

\(f\left(1\right)=ax^2+bx+c=a+b+c=3\)

\(f\left(-1\right)=a-b+c=7\)

Ta có hpt \(\hept{\begin{cases}c=4\\a+b+c=3\\a-b+c=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-1\left(1\right)\\a-b=3\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được : \(2b=-4\Rightarrow b=-2\)

Thay b = -2 vào (1) \(a-2=-1\Rightarrow a=1\)

Vậy \(\left(a;b;c\right)=\left(1;-2;4\right)\)

11 tháng 4 2018

Ta có: f(0)=-5 <=> d=-5

f(1)=a+b+c+d=4  <=> a+b+c=9 => c=9-a-b

f(2)=8a+4b+2c+d=31  <=> 8a+4b+2c=36  <=> 4a+2b+c=18 <=> 4a+2b+9-a-b=18 <=> 3a+b=9 (1)

f(3)=27a+9b+3c+d=88 <=> 27a+9b+3c=93 <=> 9a+3b+c=31 <=> 9a+3b+9-a-b=31 <=> 8a+2b=22 <=> 4a+b=11 (2)

Trừ (2) cho (1) ta được: a=2

Thay a=2 vào (1), được: b=9-3*2 = 3

=> c=9-2-3 = 4

Đáp số: a=2; b=3; c=4 và d=-5

Hàm số f(x)=2x3+3x2+4x-5

a: f(0)=5

=>a*0^2+b*0+c=5

=>c=5

f(1)=1

=>a*1+b*1+1=5

=>a+b=4

f(5)=0

=>25a+5b+1=0

=>25a+5b=-1

mà a+b=4

nên a=-21/20; b=101/20

(P): y=-21/20x^2+101/20x+5

b: f(-1)=-21/20-101/20+5=-11/10<>3

=>D ko thuộc (P)

f(1/2)=-21/20*1/4-101/20*1/2+5=177/80<>9/4

=>E ko thuộc (P)

c: y=-3

=>-21/20x^2+101/20x+8=0

=>x=6,06 hoặc x=-1,26

22 tháng 5 2019

Ta có: f(0) = c \(⋮\) 3

f(1) = a + b + c \(⋮\) 3 \(\Rightarrow\) a + b \(⋮\) 3 (1)

f(-1) = a - b + c \(⋮\) 3 \(\Rightarrow\) a - b \(⋮\) 3 (2)

Từ (1) và (2) suy ra a + b + a - b \(⋮\) 3 và a + b - a + b \(⋮\) 3

\(\Rightarrow\) \(\left\{{}\begin{matrix}2a⋮3\\2b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\end{matrix}\right.\)

Vậy a, b, c \(⋮\) 3

Y
22 tháng 5 2019

+ \(\left\{{}\begin{matrix}f\left(0\right)⋮3\\f\left(1\right)⋮3\\f\left(-1\right)⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c⋮3\\a+b+c⋮3\\a-b+c⋮3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b⋮3\\a-b⋮3\\c⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a⋮3\\-2b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\\c⋮3\end{matrix}\right.\)

12 tháng 12 2015

Vì f(0)=5 nên x*0+b*0+c=5

                    0+0+c=5 nên c=5

Vì f(1)=0 nên a*12+b*1+5=0

                  a+b+5=0

                 a+b=0-5

               a+b=-5

Vì f(5)=0 nên a*52+b*5+5=0

                   5(5a+b+1)=0

                   5a+b+1=0/5=0

                   4a+a+b=0-1

                   4a+(-5)=-1

                    4a=-1-(-5)

                   4a=4

                  a=4/4

                 a=1

nên b=-5-1=-6

Vậy a=1;b=-6 và c=5

12 tháng 12 2015

Ta co: 

  • f(0) = a.02+b.0+c = 0+0+c = c= 5
  • f(1) = a.12+b.1+c = a+b+5 = 0  => a+b = -5
  • f(5) = a.52+b.5+c = 25a + 5b + 5 = 0  => 25a+5b = -5

=> a+b = 25a+5b = -5

=> 25a-a + 5b-b = 0

=> 24a + 4b = 0

=> 24a = -4b

=> 24/-4 = b/a

=> b/a = -6

Tu \(\frac{b}{a}=-6=>\frac{b}{-6}=\frac{a}{1}=\frac{b+a}{-6+1}=-\frac{5}{-5}=1\)

=> a = 1  ;  b=-6

Vay: a=1  ;  b=-6  ;  c =5